Climate resilience and hydropower Practical Experience from EBRD

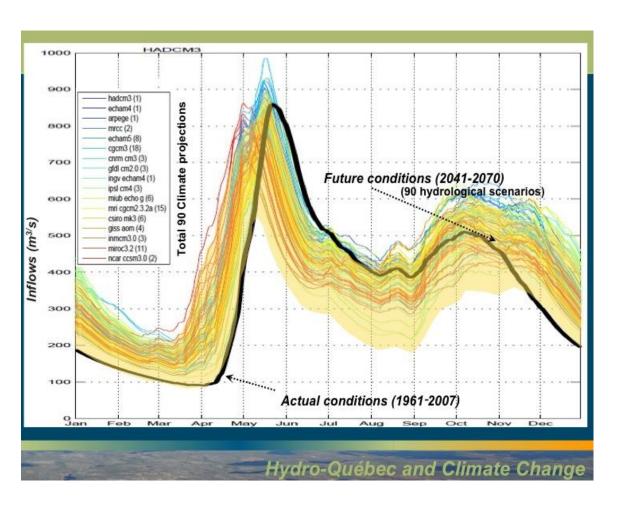
Dr Craig Davies
Senior Manager – Climate Change Adaptation
European Bank for Reconstruction & Development

IEA 5th Forum on the Climate-Energy Security Nexus Paris, Tuesday 4th November 2014

Hydropower is a major source of clean energy in the EBRD region

- Some EBRD
 countries derive
 more than 95% of
 their electricity from
 hydropower:
 - Albania
 - Georgia
 - Kyrgyz Republic
 - Tajikistan

But hydropower is very sensitive to climatic variability and climate change


Especially in the climate vulnerable countries of

Central Asia

Glacial
 hydrology is
 highly sensitive
 to climatic
 variability and
 change

Hydropower operators around the world are concerned about climate change

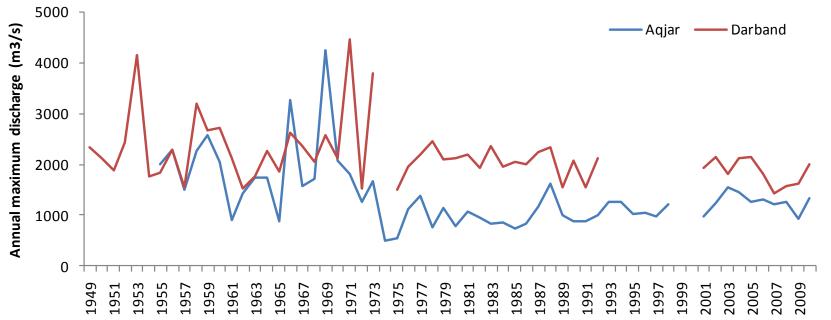
Research by Hydro Quebec indicates that climate change will have significant impacts on flows through HPPs:

- Earlier spring snowmelt
- Reduced summer flows
- Increased winter flows

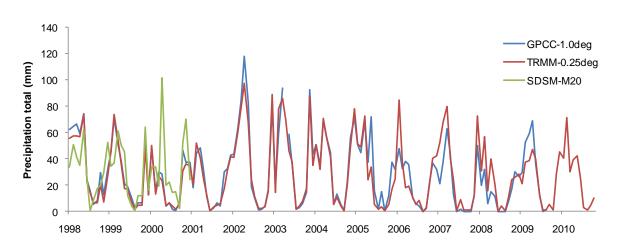
All of which has serious implications for:

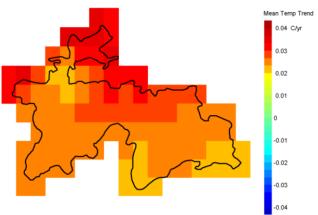
- Power generation capacity
- Management of peak supply and peak demand
- Dam safety and extreme events

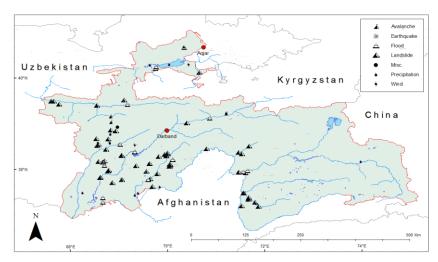
Kairakkum HPP (Tajikistan): putting theory into practice



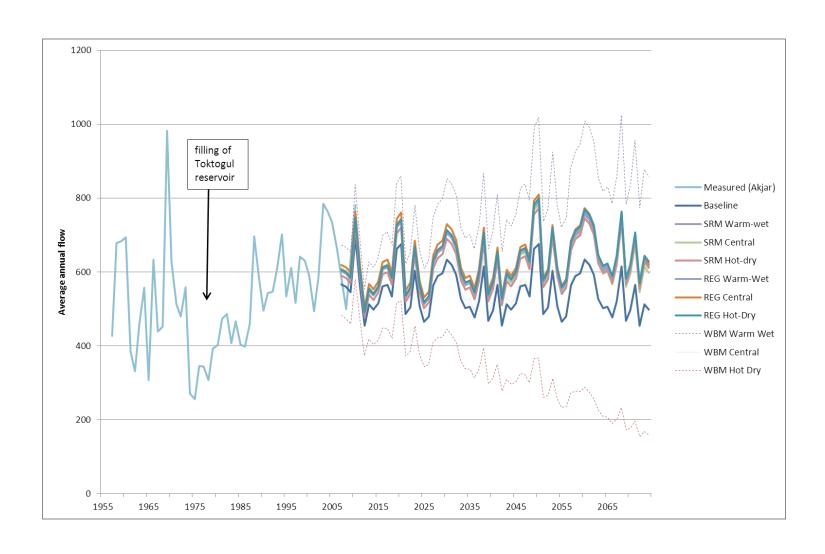
Data assembly and trend analysis

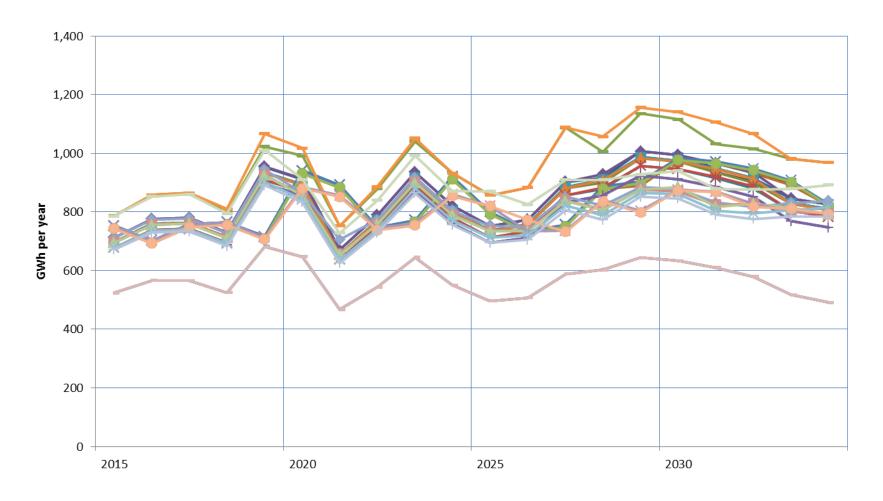






Example data sources




Climate change marker scenarios

Marker scenario		2050s		2080s	
		ΔΤ	ΔΡ	ΔΤ	ΔΡ
Hot-dry	Driest and most rapid warming member(s)	+4° C	-10%	+6° C	-15%
Central	Ensemble mean precipitation and temperature change	+3° C	+5%	+4° C	+5%
Warm-wet	Wettest and least rapid warming member(s)	+1.5° C	+20%	+2° C	+30%

Measured/simulated inflows 1957 to 2074

Modelled energy generation 2015 - 2050

Basis of economic projections were the scenarios of electricity production

Economic analysis of upgrade options taking into account climate change scenarios

Net present value (€ million)

HydroScenario		Alternative			
		6 N - 170 MW	7 N - 210 MW	4 N 2 O - 150 MW	
Regression	central	177	143	177	
Model REG	hot-dry	171	137	171	
	warm-wet	171	137	171	
Snowmelt	central	170	136	169	
Runoff	hot-dry	163	129	165	
Model SRM	warm-wet	168	134	168	
Watershed	central	157	122	161	
Bal. Model	hot-dry	83	48	93	
WBM	warm-wet	212	183	199	

Hyd			Alternative	
Scena	ario	6 N - 170 MW	7 N - 210 MW	4 N 2 O - 150 MW
Regression	central	0.0	-33.7	-0.3
Model REG	hot-dry	0.0	-34.1	-0.2
Model REG				
	warm-wet	-0.4	-34.5	0.0
Snowmelt	central	0.0	-34.1	-0.6
Runoff Model	hot-dry	-2.2	-36.5	0.0
SRM	warm-wet	-0.5	-34.7	0.0
Watershed	central	-4.0	-38.6	0.0
Bal. Model	hot-dry	-10.9	-45.5	0.0
WBM	warm-wet	0.0	-29.1	-12.5
Minimum				
Regi	et	-10.9	-45.5	-12.5

Use of min-max analysis to identify the turbine upgrade that gives the best economic performance across the entire range of projected climate change scenarios

Institutional capacity building is also essential for embedding climate resilience into hydropower management

- Strengthen capabilities on data management and record keeping
- Build long-term collaborative links with international partners in research, engineering and academia around specific PPCR tasks
- Run technical workshops on climate diagnostics, climate risk assessment, and seasonal forecasting with accredited institutions to encourage professional development
- Study tour to hydropower facilities in an OECD country in order to gain first-hand experience of best practice in managing climate risks to hydropower operations
- Build capacity to develop and apply modifications to dam operating rules based on improved hydro-meteorological forecasts in order to optimise dam safety and maximise energy productivity

Financing package: collaboration between EBRD, Climate Investment Funds (CIF) and donors

Preparatory phase: climate change and hydrological modelling (2010 – 2012)

 Funded by \$300K grant from CIF Pilot Programme for Climate Resilience

Implementation phase: investment design & implementation (2012 onwards)

- Feasibility Study
 - Funded by €800K grant (Austria)
- Implementation to be financed by EBRD and PPCR
 - USD 50 million loan (EBRD)
 - USD 4 million technical cooperation grant (EBRD, UK DFID)
 - USD 11 million grant and USD 10 million concessional finance (PPCR)