

U.S. Environmental Protection Agency Rules for Geologic Storage/EOR Greenhouse Gas Reporting Rule

L. Bruce Hill Ph.D. Senior Geologist

IEA, Paris, June 19, 2013

Greenhouse Gas Reporting Rule Subparts RR & UU Published in 2010.

Part of U.S. Greenhouse Gas Reporting Program (GHGRP)

Subparts RR and UU, FR V. 75 No. 230, December 1, 2010 at 75065

http://www.epa.gov/ghgreporting/reporters/subpart/rr.html

Reporting Rules are for Reporting

- Authority comes from the U.S. Clean Air Act.
- Complementary to EPA's Underground Injection Control (UIC) rules to protect water under the U.S. Safe Drinking Water Act.
- Not a comprehensive sequestration/storage rule.
- Provides accounting methodology for storage.
- Collects CO2 mass balance data from facilities injecting CO2 to track CO2 supply and movement with other GHGRP data.
- Purpose is to document permanence of stored CO2 through monitoring, reporting, verification.

3 GHGRP "Subparts" Applicable to CO2 Storage under GHGRP

- Subpart RR requires all facilities that conduct geologic sequestration are required to submit annual reports to EPA. No threshold for reporting. "All –in".
- <u>Subpart UU</u> requires all *other* facilities that inject CO2 (but not for sequestration) such as for EOR are required to report the amount of CO2 received.
- <u>Subpart PP</u> requires reporting from CO2 suppliers.

Schematic (EPA, 2013)

Subpart RR (all storage facilities)

- Facilities must:
 - Report basic information on CO2 received for injection.
 - Develop and implement an EPA-approved sitespecific MRV (Monitoring, Reporting, Verification) plan.
 - Report the amount of CO2 geologically sequestered (stored) using a mass balance approach and annual monitoring activities.

MRV Plan Must Include:

- 1. Identify *active* and *maximum* monitoring areas.
- 2. Identify surface leakage pathways (EOR focus should be abandoned wells).
- 3. Develop strategy for detection and quantification of surface CO2 leakage.
- 4. Baseline measurements (pre-injection).
- 5. Calculation methodologies and accounting.
- 6. Continue post injection monitoring until EPA grants site closure authorization. Monitoring and modeling must show CO2 is not expected to migrate in the future in an manner that would result in surface leakage.

Subpart RR Annual Monitoring Report

- A narrative history of the monitoring effort conducted.
- A description of changes made to the MRV plan.
- A narrative history of any monitoring anomalies that were detected & how they were investigated and resolved.
- A description of surface leakages, if any.

Current GS Projects with R&D Exemptions from Subpart RR Reporting

Final Decisions

Project Name	Туре	Date of Final Decision*	Final Decision Documents
Boise White Paper LLC Wallula Basalt Carbon	R&D project	May 29, 2013	Decision (PDF) (3 pp,
Dioxide Pilot Study	exemption request		1.1M)
SECARB Phase III Anthropogenic Test	R&D project exemption request	June 29, 2012	Decision (PDF) (10 pp, 1.6M)
Archer Daniels Midland Company Midwest Geologic Sequestration Consortium Project	R&D project exemption request	October 12, 2011	Decision (PDF) (6 pp, 464K)
Boise White Paper LLC Wallula Basalt Carbon	R&D project	August 12, 2011	Decision (PDF) (3 pp,
Dioxide Pilot Study	exemption request		340K)
American Electric Power's Mountaineer Plant	R&D project	July 29, 2011	Decision (PDF) (4 pp,
project	exemption request		110K)

* See 40 CFR Part 78 for appeals procedures, including the requirement that appeals must be made within 30 days after EPA has issued its decision.

Reporting to Date

- GHGRP (program) total: For reporting year (RY) 2011, approximately 8,000 facilities in nine industry sectors reported 3.3 billion tons of CO2e.
- Subpart RR: No facilities have reported to date.
- Subpart UU: Appx 75 facilities, mostly EOR, have reported 64 Mt received for injection.

Facilities Reporting under UU

Source: http://ghgdata.epa.gov/ghgp/main.do#/facility/?q=Find%20a%20Facility%20or%20Location&st=&fid=&sf=11001000&ds=I&yr=2011&tr=current&cyr=2011

UIC Program Well Classes II, VI

Oil and Gas

151,000 EOR wells(80%) Brine Disposal Wells (20%)

Class II Administered by most States Via "Primacy"

Geologic Storage

States may also Administer class VI by primacy but presently done By EPA regions.

Integrating RR & UIC Requirements

- Storage in EOR fields can be done under UIC Class II or Class VI depending on risk to USDWs
- UIC program elements may satisfy MRV plan submitted for subpart RR.
- Operators will supplement the elements of their UIC plans, particularly under class II. (E.g. monitoring area, baseline and monitoring tools, site closure, etc.)
- EPA requires a transition to class VI from class II in EOR fields where there is an increased risk profile. Must revise MRV plan.
- Proposed guidance document on transition soon.

Rule Requirement	Class II	Class VI
		Computational modeling of plume and
		pressure front; must be revaluated max 5
Area of Review (AoR)	0.25 mi	yrs.
		Comprehensive geologic study, identifying
	Define zone of "endangering	confining zone, identification of faults,
Evaluation of AoR	influence"	fracture zones.
	Confining zone must separate	
	injection zone from USDW &	
	must be free of faults &	Must have Suitable geologic system with a
Geologic Review	fractures	confining zone free of transmissive faults.
	Review reasonably available	Identify & take corrective action on all
Legacy Wells	well data	wells at risk of leakage.
		Every year, casing inspection log or
Mechanical Integrity		temperature log; continuous annular
Tests	Every 5 years	pressure.
		USDW/ groundwater, subsurface injection
Baseline Monitoring	None	zone.
		Groundwater monitoring; tracking plume
CO2 Testing & Monitoring	None.	and pressure front.
	Cased and cemented to	
	prevent movment of fluids into	Must be prevent movement of fluids into
	USDW & Designed for life	or between USDWs compatible with CO2
Well Construction	expectancy of well	injectate for life of project.
	Wireline logs through drinking	
	water (USDW) zones and	
Well Evaluation	confining zone.	Wireline logs, including CEL.
	Pressure shall not exceed frac	
Injection Pressure	pressure.	Must not Exceed 90% of frac pressure
		Injection rate, pressure, nature of
	Injection rate, pressure, nature	injectate. Must maintain a pressure on the
Injection Monitoring	of injectate.	annulus. Alarms, downhole shut off.
Reporting	Annual	Semi Annual
		Cease injection; carry out pre-approved
Emergency Response	Must report in 24 hours.	remedial response plan. Report 24 hrs.
	Well plugging must be	
Plugging	acceptable to Director	Injection well plugging plan
Post Injection Site		
Care/Financial		Closure / monitoring plume and pressure
Responsibility	None	front. 50 year presumption

Rough Comparison of UIC Class II & Class VI

Storage Regulations Gap?

- While Subpart RR and UIC program rules are complementary, no rules exists in the U.S. that would deem a volume "sequestered" or "stored."
- Subpart RR does not enforce emissions reductions nor does it penalize facilities for releases to the atmosphere.
- Subpart RR is for reporting mass balance of stored CO2 and CO2 emitted to the atmosphere.
- Underground Injection Control (UIC) rules are for aquifer protection.
- Adding complexity: UIC class II is administered mostly by states; class VI currently administered by EPA regions but states can apply (e.g. ND).

U.S. State CCS Regulatory Development (Source: CCS Reg)

	Sequestration Site Permitting	Property Rights	Long Term Stewardship	EOR Status	Tax Incentive	Regulatory Incentive
California						
Colorado						x
Illinois		x	x	x	x	x
Kansas	х		x	x	x	
Kentucky						
Louisiana	х	х	x	x		
Massachusetts						
Minnesota						
Mississippi					x	
Montana	х	х	x	х	х	
New Mexico					x	
North Dakota	х	х	x	x	x	
Oklahoma	x	х		x		
Pennsylvania						
Texas	х	х	x	x	x	
Utah	х			x		
Washington	x					
West Virginia	x	х		x		
Wyoming	x	x	x	x		

(Information may not be fully up to date)

http://www.ccsreg.org/billtable.php?component=Sequestration

Managing MRV/Risk in EOR Settings

After Hill, Hovorka, Melzer (2012); Original chart: Sue Hovorka.

Saline and EOR at One Facility? "Stacked" Storage

- Existing Infrastructure
- Reservoir knowledge and capacity
- Existing Surveillance tools
- Multiple caprock seals

	System	Series	Stratigraphic Unit	Major Sub Units		Potential Reservoirs and Confining Zones
	Plio- Pliocene			Citronelle Formation		Freshwater Aquifer
		Miocene	Undifferentiated			Freshwater Aquifer
				Chicasawhay Fm.		Base of USDW
Tertiary	Tertiary	Oligocene	Vicksburg Group	Bucatunna Clay		Local Confining Unit
		ū	Jackson Group			Minor Saline Reservoir
		ocen	Claiborne Group	Ta	alahatta Fm.	Saline Reservoir
		e Pal	Wilcox Group	Hatchetigbee Sand Bashi Marl		Saline Reservoir
		eocene		Salt Mountain LS		
			Midway Group	Porters Creek Clay		Confining Unit
		Upper	Selma Group			Confining Unit
	Cr.		Eutaw Formation			Minor Saline Reservoir
	etac		Tuscaloosa Group	Upper Tusc.		Minor Saline Reservoir
	eo			Mid. Tusc	Marine Shale	Confining Unit
	us			Lower Tusc.	Pilot Sand Massive sand	Saline Reservoir
			Washita-	Da	antzler sand	Saline Reservoir
			Fredericksburg	E	Basal Shale	Primary Confining Unit
Cretaceous	c	Paluxy F	Paluxy Formation		'Upper' 'Middle' 'Lower'	Proposed Injection Zone
	retac	Low	Mooringsport Formation			Confining Unit
	eous	۹ Ferry Lake Ant	Ferry Lake Anhydrite			Confining Unit
				Rodessa Fm.	'Upper'	Oil Reservoir
			Donovan Sand	'Middle'		Minor Saline Reservoir
					'Lower'	Oil Reservoir

No Baseline Needed.

Process-Based Soil Gas Method (K. Romanak / BEG)

- Important for EOR settings (brownfields)
- Method pioneered at Kerr Farm/alleged Leakage at Weyburn
- Does not rely on background CO₂ measurements
- Uses ratios among simple gases (CO₂, CH₄, N₂, O₂)

For More Information:

Available online at www.sciencedirect.com

Energy Procedia 00 (2013) 000-000

Procedic

GHGT-11

Geologic carbon storage through enhanced oil recovery.

Bruce Hill^a, Susan Hovorka^b and Steve Melzer.^c

*Clean Air Task Force, Suite 530, 18 Tremont St, Boston MA, 02108, USA Bureau of Economic Geology, University Station, Box X, University of Texas, Austin, TX 78713, USA *Melzer Consulting, 415 W Wall St, Ste. 1106, Midland, TX 79701, USA

Abstract

The advancement of carbon capture technology combined with carbon dioxide (CO2) enhanced oil recovery (EOR) holds the promise of reducing the carbon footprint of coal-fired power plants and other industrial sources, while at the same time boosting production of oil. CO2 injection in deep formations has a long track record. Tertiary EOR with CO2 has its origins in West Texas in the 1970's, when CO2 was first used at large scale at the SACROC field to produce stranded oil following primary and secondary production (water flooding). Because CO2 mixes with oil and changes oil properties, CO2 floods are effective at producing additional oil following water flooding. Carbon dioxide is a valuable commodity both because of its ability to stimulate oil production from depleted reservoirs, and because of the limited volumes of naturally-sourced CO2 in the U.S. Therefore, during large-scale commercial floods, CO2 that is produced with oil during EOR is separated, compressed and re-injected and recycled numerous times. Venting to the atmosphere is a rare event, quantifiable, and constitutes an insignificant fraction of the injected CO2. The CO2 purchased mass, net any venting during EOR activity is sequestered in the reservoir by a combination of capillary, solution and physical trapping mechanisms. Approximately 600 million metric tonnes of purchased CO₂ have been utilized in the southwest U.S. Permian Basin (PB) alone, the rough equivalent of 30 years worth of CO2 from a half dozen medium-sized coal-fired power plants.

Although CO₂ EOR technology is mature in the U.S., many reservoir targets have not been flooded because of limited CO₂ supply. Moreover, very large newly discovered EOR resources, known as "residual oil zones" (ROZs) occur in naturally water-flooded intervals below the oil-water contact in reservoirs that possess pose space containing immobile oil. ROZs are also now being documented in geologic settings without overlying conventional oil and gas accumulations. ROZ exploration and production using CO₂ promises the supplemental capacity to accept very large volumes of CO₂ in order to access and produce the remaining immobilized oil.

Many existing EOR sites may be ideal for sequestration because they: 1) provide known traps that have held hydrocarbons over geologic time, 2) provide existing CO_2 transportation and injection infrastructure, 3) occur in zeros where the general public widely accepts injection projects, 4) provide CO_2 .

Bruce Hill Clean Air Task Force USA (603) 383 640 bruce@catf.us