
International Energy Agency

From demonstration to deployment: support policies for CCS Wolf Heidug

AND STORAGE

The starting point: Economic characteristics of **CCS technology will change with time**

Markets failures produce outcomes that are not socially optimal

CARBON CAPTURE AND STORAGE

CCS-relevant market failures

Externality

 Atmosphere is scarce resource - overused when not priced accordingly

Public good

• Underinvestment results when returns from technology learning can only be partially appropriated by investor

Imperfect information

CARBON CAPTURE AND STORAGE Difficulty of early investors to distinguish good from bad projects may hinder access to capital markets

Complementary markets

 Underprovision of CCS due to lack of certainty about the provision of transport and storage infrastructure

Market failure as rationale for intervention

Market failure	Example policies	
Emissions externality Failure to internalise the cost of greenhouse gas emissions	Carbon tax or emissions trading scheme	
Public good Failure to appropriate returns generated by investments in innovation	<i>Quantity</i> -based instruments: feed-in tariff, portfolio standards	
Risk and capital market failure <i>Underprovision of private</i> <i>capital resulting from imperfect</i> <i>information</i>	Provision of debt/equity, grants, investment tax credits, insurance	
Complementary markets Undersupply due to dependency on complementary markets and coordination failure	Regulation Sorry for the jargon	

An economy-wide carbon price is the most efficient way to tackle the emissions externality

- Either a carbon tax or emissions trading scheme can provide a price
 - Taxes provide more stable carbon price, making return on CCS investment more certain
 - Political economy considerations have tended towards creation of trading schemes

Risk of policy failure is particularly acute in creating carbon price

- Investors may question whether carbon pricing policy will persist in the long term
- Other policy instruments, i.e. feebate, emissions performance standard may be used in cases where a sector-specific approaching to controlling emissions is preferred

Feebate: carbon tax applied to emissions above certain baseline, combined with payments if emissions are below baseline *Emission Performance Standard*: prescribes acceptable emission level per unit of output

Purchasing knowledge

- High-risk of early demonstration projects suggests grant-funding may be best
 - but this is not sustainable in the longer run
 - Feed-in tariff for CCS
 - a 'top-up' to the electricity price eliminates uncertainty due to variable fossil-fuel prices
 - Portfolio standard
 - may support the development of CCS infrastructure
 - threshold effects

CO₂ purchase commitment

Minimises risk of leakage/decline in industrial competitiveness

<u>Feed-in tariff</u>: long-term contract between power producers and, distributers to sell electricity at fixed, pre-determined price

<u>*Portfolio standard*</u>: obligation on electricity generators to use CCS to produce specified fraction of output

Public sector instruments to overcome capital market failure

- In early stages of CCS, capital markets may be unwilling to provide sufficient capital
- Public sector can either
 - make direct capital contributions
 - provide risk mitigation instruments

CARBON CAPTURE AND STORAGE

Financial Institutions may be better able to provide these instruments than governments themselves

Steering the development of CCS infrastructure

- Risk of stranded assets
- Governmental role in electricity transmission and distribution network provides model
 - Regulation, public supervision
 - Underwriting portion of fixed network cost

Some criteria for good policy making

Effectiveness

- Is policy instrument able to achieve its objective?
 - Application across different sector
 - Strength of incentive to invest in abatement

Efficiency

Does policy encourage least-cost abatement option?

CARBON CAPTURE AND STORAGE

Ease of application

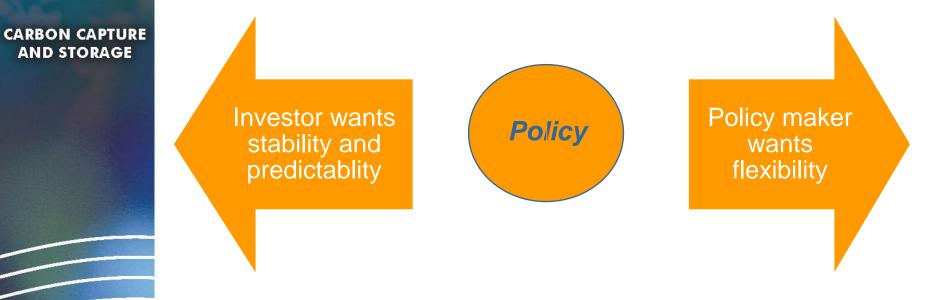
Informational and institutional requirements?

Political acceptability

High political acceptability - low policy risk

Multiple policy objectives justify a suite of interventions

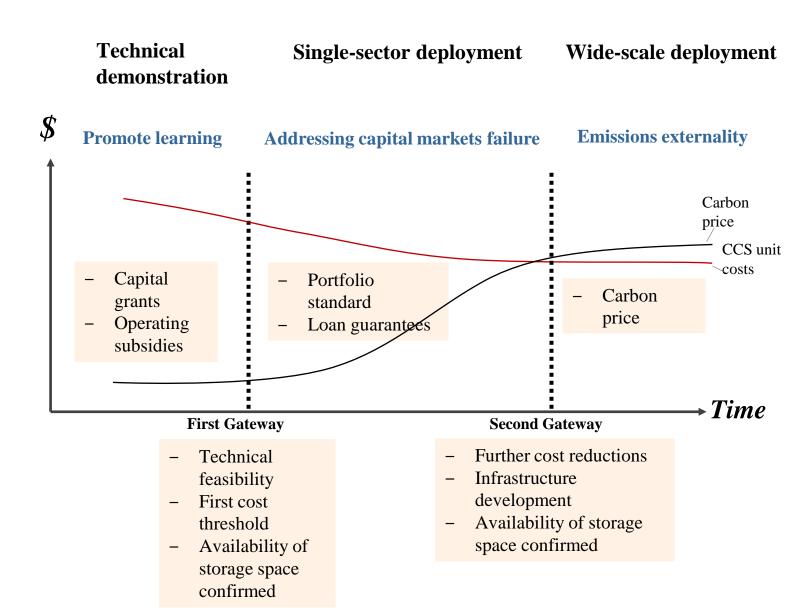
- As CCS development is affected by multiple market failures, multiple support policies can be justified
- No more than one policy instrument to tackle each market failure


Beware of policy interactions

CARBON CAPTURE AND STORAGE If CCS is incentivized via emission trading, supplementary support (via CCS certificate scheme and others) may lead to a lower price on emissions covered by the ETS

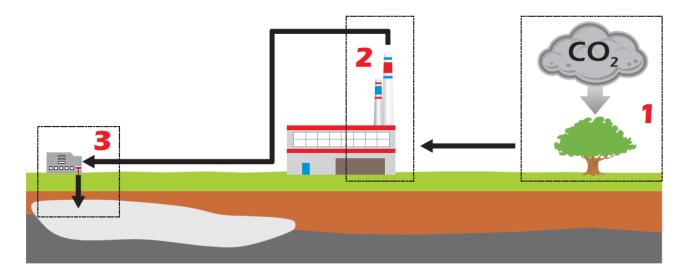
The policy dilemma

- Change in the characteristics of CCS, and associated focus of incentive policy, creates a challenge for policymaking
 - on the one hand, want to be able to adapt and modify policy as technology changes or new information comes to light
 - on the other hand, the (perception of) changing policy may damage investment


Policy gateways to reconcile flexibility with stability

- 'Policy gateways' might help overcome this challenge;Gateways would consist of three components
 - policies that will be used in each stage
 - criteria that will define when or if policy will move to the next stage
 - an outline of the reaction if gateways are missed

CARBON CAPTURE AND STORAGE Protects government from overstretching resources, from imposing poor value for money, and lowers policy risk for investors


Policy gateways in action

CARBON CAPTURE AND STORAGE

BECCS: Combining bioenergy with CCS

CARBON CAPTURE AND STORAGE

Storage

Capture

Biological sequestration

BECCS can create 'negative emissions' that can reduce atmospheric concentrations of CO₂

- This should be reflected in incentive policy
- BECCS is the use of CCS to capture emissions from biomass processing or combustion

CARBON CAPTURE AND STORAGE

- it has the potential to reduce atmospheric concentrations of CO₂
 - CO₂ sequestered from air as biomass grows is not returned to atmosphere
 - may well be needed for climate stabilisation

Stylised comparison of conventional CCS and BECCS lifecycle emissions

Process	CCS	BECCS
Biological sequestration		-1
Combustion	+1	+1
Storage	-1	-1
Lifecycle emissions	0	» <u>-1</u> -
Should be reflected as extr incentive	ra 🚽	

CARBON CAPTURE

Thank you

wolf.heidug@iea.org

www.iea.org/ccs