Leveraging Climate Science for Water and Energy Management

Marco Braun¹ René Roy² Kristina Koenig³

¹Ouranos Consortium, Montréal, Québec, Canada ²Institut de recherche d'Hydro-Québec (IREQ) ³Manitoba Hydro, Winnipeg, MB

The "Nexus Forum"- 4rd Forum on the Climate-Energy Security Nexus: Water and Energy – Geneva, June 12, 2014

Climate models virtual worlds

Climate Models vs Real World

2.5° / ~ 300km

Climate Models vs Real World

animation online: http://www.youtube.com/ watch?v=n0mupl4FZsQ&feature=related

animation online: http://www.youtube.com/ watch?v=m2Gy8V0Dv78

Climate Model Evolution

Adaptation Example I: Hydro Generation System Expansion - What are the prospects of operation in a future climate?

Example: Manitoba Hydro

Example: Manitoba Hydro – How?

- get involved with climate experts
- built own hydro climate task force
- study observed climate
- study climate model projections
- assess future water availability from GCMs
- asses options using an impact model (SPLASH)
- set up a complex hydro model

courtesv of

Manitoba + OURANOS

Adaptation Example II: Equipment refurbishment - Are future changes in water availability to be taken into account?

Hydro-Québec: Are CC impacts an issue for renovations?

- Installations will need refurbishment
- Request: « We need your best climate change scenario! »
- Response: Show why there is no single « best CC scenario » and propose alternative.

THE best simulation? Uncertainty explained by N simulations

Response: Selection of four scenarios at 5%, 25%, 50% and 75% of change

Selcection Criteria: Δ in energy production / temp

Response: Selection of four scenarios at 5%, 25%, 50% and 75% of change

Climate Information Variety

source: Isabelle Charron, A Guidbook on Climate Scenarios, 2014, Ouranos

Climate Services

- a bidirectional learning and communication process that should maintain
 Simple
 Robust
 - a critical spirit
 - transparency
 - credibility
 - responsibility
 - traceability

Soumis p	ar: Jean-L tlas Fores	ouis S tier	ouci		OLIMANOS	Date : 1	19 nove	mbre 2010	0	
Nombre	de scénar	los ém	issions (ies :		-				
1		2		3	(4		More		
Nombre	de simula	tions	robuste	sse stati	stique) :					
MCG/MRC		1 5		10	20	20 50		000	More	
Nombre	de modèl	es (div	ersité de	is mode	iles) :				-	
MCG/MRC		1	3	6	9	14	19	24	More	
Résolutio	n horizor	tale (I	km):			1	1			
MCG/MRC 500			250		00 50	1	5)	10	5	
Cuvée: /	Année de	produc	tion des	simulati	ions climatic	ues.	-			
2000 2002		2004		2006	2008	201	00	2012	214	
Niveau d	e connais	sance	dans les	modèle	15	-	-		-	
SAR GIEC		TAR GIEC			FAR GIEC			TO GIEC	-	
océan 3D		schéma de surfa complexe		rface	aérosols, dyn. des glaces			cycle carbane, chimie Viset dyn		
			Com	nentai	res additio	onnels				
Projections o présentées a disponibles:	fimatiques wec l'ensen	des sim ble des	simulations of	ilsées, Is	Couvertu par les sir sélections	re de Fens nulations vées 8 souced so	emble de	s change me s onsentite of 81	other and a projectes	

Climate Services

- a bidirectional learning and communication process that should maintain
 - a critical spirit
 - transparency
 - credibility
 - responsibility
 - traceability
- can range from basic information and support to detailed, custom tailored analysis including R&D
- climate change information needs to include variability and uncertainties

Conclusions

- Climate simulators (=models) provide climate information in abundance at different scales. The complexity of these data must be understood.
- Downscaling can be employed to meet scales and correct biases.
- Climate impact models can be driven with climate data (hydro models, management models, etc.)
- Appropriate assessment and documentation of uncertainties is required for all levels of scenario production and use (emission scenarios, models, natural variability, impact models, ...)
- Climate experts can help in interpreting and processing these data into value added products (connect users + Climate Services)
- Despite all remaining climate projection caveats and uncertainties the information we have is sufficiently mature to show anticipated changes and the underlying level of confidence

Thank You For Your Attention!

Questions? Comments?

Braun.Marco@ouranos.ca

