

A policy strategy for carbon capture and storage

Wolf Heidug, Ph.D

Context

- Significant work on economic instruments since 1980's to support GHG emission reduction objectives
- Used to assess support policy for renewables
- Limited application to CCS
- IEA work focus on overall policy framework for CCS – from demos to commercial deployment

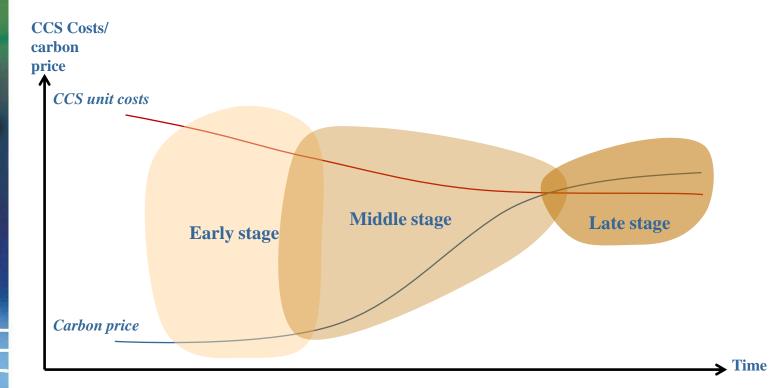
www.iea.org/papers/2012/policy_strategy_for_ccs.pdf

This talk is about...

- Feed-in tariffs
- Emission trading
- Portfolio standards
- Feebates
- Carbon tax
- Grants
- Investment tax credits
- Performance standard
- Credit guarantees

... but not only

Policy choices


- 1. What is encouraged?
 - Operation or investment support
 - Subsidizing the cost of abatement or increasing the cost of emissions
- 2. Who pays or bears the risk?
 - Public resources or mandates placed on private sector?
- 3. Explicit targeting of CCS or technological neutral?

CARBON CAPTURE AND STORAGE

Changing characteristics

- CCS is an evolving pre-commercial technology
- The cost of CCS is currently significantly above carbon prices - where they exist

Some reasons to intervene

- Controlling emissions
 - Polluter pays

- Promoting learning
 - Learning by doing
 - Learning from diversity

- De-risking
 - Unequally distributed information on cost and performance

Policy evolves with technology

No single one-fits-all instrument

CARBON CAPTURE AND STORAGE 2

Early stage

Supporting capital deployment and operations

Costs and risks sharedby public and privatesector

Subsidising abatement

CCS-specific support

As technology matures

Greater willingness to invest by capital markets

Reduced learning spillovers and better knowledge of risks

Polluter pays

Achieving least-cost abatement

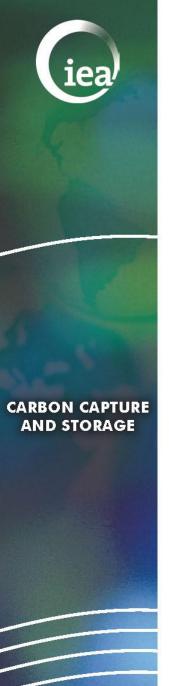
Late stage

Incentivising operations

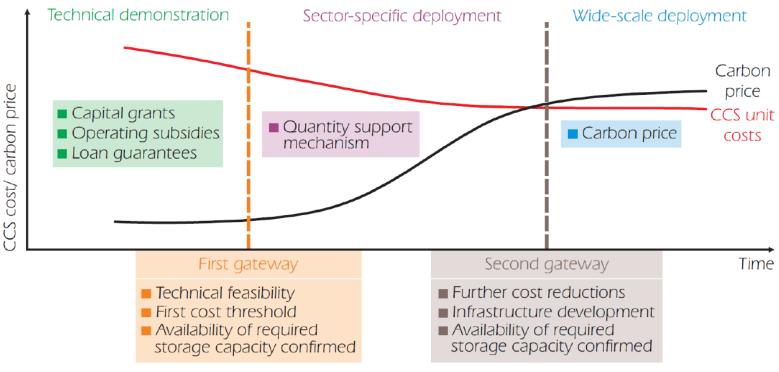
Costs and risks mainly borne by private sector

Penalising emissions

Technology-agnostic policy


Matching policies to objectives

Reducing emissions	Technology learning	Access to capital markets
Cap and trade	Capital grant	Co-investment equity
Carbon tax	Production subsidy	Provision of debt
Baseline and credit	Investment tax credit	Credit guarantees
Feebate	Production tax credit	Insurance products
Emissions performance standard	Feed-in tariff	
CO2 purchase contract	Premium feed-in tariff	
	Portfolio standard	



Policy gateways

- Challenge for policy-making
 - on the one hand, want to be able to adapt and modify policy as technology changes or new information comes to light
 - on the other hand, the (perception of) changing policy may damage investment
- Policy gateways' might help overcome this challenge
- Gateways consist of three components
 - policies that will be used in each stage
 - criteria that will define when or if policy will move to the next stage
 - an outline of the reaction if gateways are missed
- Protects government from overstretching resources, from imposing poor value for money, and lowers policy risk for investors

Policy gateways

BECCS can create 'negative emissions'

- should be reflected in incentive policy
- BECCS is the use of CCS to capture emissions from biomass processing or combustion
- has the potential to <u>reduce</u> atmospheric concentrations of CO₂
 - CO₂ sequestered from air as biomass grows is not returned to atmosphere
 - may well be needed for climate stabilisation

Stylised comparison of conventional CCS and BECCS lifecycle emissions

Process	ccs	BECCS
Biological sequestration		-1
Combustion	+1	+1
Storage	-1	-1
Lifecycle emissions	0	-12
Should be reflected as extincentive	ra	

OFCD /IEA 201

Incentives for BECCS

- At point of combustion/fuel transformation, the same benefit is realised - prevention of CO₂ emission - and so whatever applies to CCS should also apply to BECCS
- An additional incentive should also be provided
 - Could be achieved through providing credits for biological sequestration of CO₂
- Cultivating, harvesting, transporting and processing of biomass all result in emissions that may reduce the emissions reduction potential of BECCS
 - Emissions from indirect land-use change as result of cultivating biomass need to be monitored
- These need to be accounted for to provide correct strength of incentives for BECCS

CARBON CAPTURE AND STORAGE

Thank you

wolf.heidug@iea.org

www.iea.org/ccs

Incentivising CCS in the developing world

- IEA Roadmap anticipates 55% of CCS investment to 2050 to be outside of the OECD
- to incentivise this investment
 - baseline and credit scheme (CDM and/or others)
 - Nationally Appropriate Mitigation Actions (NAMAs)
 - important role for IFIs in
 - providing concessional funds,
 - risk mitigation instruments
 - supporting development of market in carbon credits from CCS,
 - technical assistance

