

International Energy Agency

Global impacts and issues with CCS through EOR

4th IEA International CCS Regulatory Network Meeting 10 May 2012

Sean McCoy CCS Unit

CARBON CAPTURE AND STORAGE

Three key messages

- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

CO₂-EOR: Using CO₂ to improve oil recovery

CARBON CAPTURE AND STORAGE

Source: McCoy, 2008

iea/

How does CO₂ improve oil recovery?

Two types of CO₂-EOR processes exist:

- Immiscible: injected CO₂ displaces oil from the reservoir and drives it towards production wells
- Miscible: injected CO₂ forms a single-phase mixture with the oil, effectively reducing the density and viscosity of the oil, improving ability of the oil to flow
- Miscible CO₂-EOR tends to recover more oil than immiscible, but uses less CO₂ per barrel
 - The type of CO₂-EOR process depends on reservoir pressure and oil composition (MMP)
- Majority of projects are miscible CO₂-EOR projects

CARBON CAPTURE AND STORAGE

Increased oil production from the Weyburn Unit under miscible CO₂-EOR

Around 30,000 bbl/day total production, over 20,000 bbl/d due to CO₂-EOR

Figure: Cenovus Energy/Malcolm Wilson, PTRC

CARBON CAPTURE AND STORAGE

An upwards trend for US miscible projects and production from CO₂-EOR

CARBON CAPTURE AND STORAGE

Data: Oil & Gas Journal, 2010

CARBON CAPTURE AND STORAGE

Three key messages

- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

Emissions can be reduced through displacement

Marginal Barrel	Marginal Generation Displaced (kg CO ₂ e/MWh)	Emissions Reduction Efficiency			
CO ₂ e/bbl)		Project 1	Project 2	Project 3	Project 4
Current Average Consumption- USA (529)	Current Average Generation-USA (652)	71%	68%	70%	73%
Canadian In- Situ SCO (600)	Uncontrolled IGCC (894)	140%	128%	137%	145%
	NGCC (425)	87%	75%	83%	92%
Saudi Arabian Light (521)	Uncontrolled IGCC (894)	94%	92%	93%	95%
	NGCC (425)	41%	38%	40%	42%
	Carbon-free Electricity (0)	-8%	-10%	-8%	-7%

McCoy et al, 2010

Important observations from past lifecycle assessment research

- 1. Emissions depend on boundaries:
 - a) Including emissions from oil production makes business-as-usual (BAU) CO₂-EOR a net emitter
 - b) Changes to design and operation of BAU CO₂-EOR could decrease the CO₂ footprint
- If energy-related emissions that would otherwise be produced from an equivalent system are displaced, CO₂-EOR reduces emissions
- Emissions reduction efficiency is a function of energy displacement and CO₂ utilization
 - a) Displacement of CO₂-intensive power and oil results in a larger emissions reduction than would otherwise occur

CARBON CAPTURE AND STORAGE

CARBON CAPTURE AND STORAGE

Three key messages

- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

Attributes of CO₂-EOR operations necessary for qualification as storage

Technology	Energy Policy	Climate Policy
 Increase net CO₂ utilization through changes to design and operation (?) Monitoring, measurement, and verification of similar stringency to that applied to saline aquifers Abandonment to ensure 	 Law and regulation to enable CO₂-EOR as a oil recovery process Regulation to ensure that CO₂- EOR is undertaken safely for humans and the 	 Measurable emissions reduction goals and accompanying policy Laws and regulation enabling CO₂-EOR as climate change mitigation option Accounting rules that accurately award
long-term retention of stored CO ₂	environment	credit for emissions avoided

CARBON CAPTURE

AND STORAGE

Numerous planned CCS projects rely on CO₂-EOR

Data: GCCSI Project Database, 7 Nov. 2011

Barriers to private investment in CO₂-EOR

BAU CO2-EOR	CO ₂ -EOR for Climate Change Mitigation
 Low valued investment option in IOC portfolios Lack of low cost CO₂ for injection in many places Competition with other EOR processes Mismatch in business cases for capture versus injection 	 Those for BAU CO₂-EOR, PLUS: No return on additional cost for storage Cost for monitoring, measurement, and verification Cost for ensuring long-term containment

Can incentive policies address these issues? If so, how?

International Energy Agency

Questions?

Sean McCoy, Ph.D. International Energy Agency Energy Analyst, Legal & Regulatory Issues

Telephone: +33 (0)1 40 57 67 07 Email: sean.mccoy@iea.org Web: www.iea.org/ccs/