business solutions for a sustainable world

Adaptation Challenges and opportunities for Electric Utilities María Mendiluce

> **3rd Forum on the Climate-Energy Security Nexus: Electricity Sector Resilience** Friday, 25 October 2013, International Energy Agency, Paris

WBCSD Electric utilities project

Vision

Secure, affordable & clean electricity contributes to 9 billion people living well within the limits of the planet.

Objectives

- 1. Provide a global and progressive perspective
- 2. Share best practices

csd electric utilities

- 3. Develop strategic partnerships
- 4. Raise the visibility of members actions
- 5. Create a platform for discussion amongst CEOs

Work program 2013-2015

Partnerships & Advocacy

Industry partnerships Global Electricity Initiative Banking Environment Initiative (Cambridge University)

Intergovernmental ✓ International Renewable Energy Agency (IRENA) ✓ UNFCCC ✓ Clean Energy Ministerial ✓ International Energy Agency (IEA) ✓ OECD

Adaptation is regarded by the industry as a key focus area

Route to Resilience

25-Oct-13

4

Source: GEI Survey (work in progress)

Drivers for resilience building action within the electricity industry-

Resilience s/t effects & adapt to l/t climate change											
		Generation				Transmission		Distribution		Risk	
		Thermal	Hydro	Wind / PV	Bio	Lines	Stations	Lines	Meters	Management	
Increase in the strength, scale, duration and frequency of hazards	Temperature (warm spells, heat waves)									Costs	
	Precipitation (heavy rainfall, change rainfall patterns)									Reputation	
	Winds									Opportunity	
	Storm Surge										
	Droughts										
	Floods										
		Medium	High	• The table reflects the level of climate change impact							
		impact	Impact		for specific locations and is not a general description of						
wbcsd electric utilities					ł	global climate impacts					

Work in progress

Resilience-building considerations are being incorporated in the companies strategic thinking and relations with stakeholders

Generation

- Include climate modeling and downscale in the new investments decision making
- Organize a fast track mobilization of large number of generators
- Additional peak power generation capacity, back-up generation capacity
- Distributed energy resources, including mobile generators, can serve critical loads in an emergency
- Design production facilities less sensitive to air and water temperature
- Maintenance and refueling of nuclear and thermal power stations avoiding summer period
- Design power plants and storage according to potential changes in precipitation and storm surges.
- Develop business models to enhance multi purpose aspects
- Downscale global to regional/local models to better predict droughts/floods.
- Droughts may increase conflict around water, and the need to prioritize water for different uses.

Floods may threaten security of installations and require preparations in reservoirs to take additional water.

Transmission and Distribution

- Strengthening overhead transmission lines or installing underground cables
- Grid modernization to remotely sense & dispatch crews & equipment to highest priority areas
- Distributed storage applications in buildings (emergency, grid reliability, peak loads)
- Back-up transformers and other essential spare equipment
- Sectional switches to accurate control over feeder shutdowns and isolations
- Reduce the number of electric cables in wooded areas and harden vulnerable overhead lines against winds, tree maintenance, line strengthening, and a line relocation program.
- Networks can be strengthened by upgrading poles and towers to withstand storm force winds
- In coastal locations harden key T&D infrastructure
- Elevate parts of the substations or protecting the perimeter of the facility
- Gradually replace all underground equipment susceptible of flooding with submersible and unaffected to saltwater equipment

Demand Response

- Ensure power supply to priority users
- Encourage Energy Demand Management
- Advanced meter infrastructure, line sensors and smart relays to comunicate with customers and respond
- Contract consumption waste to industrial customers and export

Risk-cost- benefit analysis is used to inform investment decision making alongside other criteria

Source: Adapted from ECA 2008

Entergy study of hurricanes on the Gulf of Mexico coast

Lessons learned (so far)

- Industry:
 - Electric utilities should apply risk management and risk-cost-benefit analysis when developing adaptation strategies.
 - The electricity industry needs to build expertise in analysing climate information (e.g. downscaling global climate models) to better understand risks and determine which solutions are efficient and cost-effective.
 - Electric utilities need to continue investing in R&D to develop effective upgrades to major infrastructure elements, broadening the range of options and reducing costs over time.
 - **Pool learning,** exchange best practice and share resources to respond more effectively to extreme events.

Lessons learned (so far)

- Public private collaboration
 - Public authorities, businesses and a range of stakeholders need to collaborate to plan effective resilience and adaptation in the power sector adapted to specific local circumstances
 - Effective pooling of technical expertise, risk assessment and socioeconomic costs will be fundamental to cost benefit assessment and key to developing new business models to price and manage risk.
 - Regulators need to consider market signals and regional regulatory structures appropriate to local circumstances that can reduce risks and raise standards.
 - Local Governments and utilities should work together to raise awareness of climate impacts and solutions for specific local circumstances

The way forward:

- Incertitude The "1 in a 100 years" event is increasing in frequency, intensity, special extent and duration
 - Change mindset to include Incertitude in utilities operations
 - Hardening or flexibility?
- Insurance can play an important role for utilities and customers to understand and quantify the risks
- Anticipation is cheaper tools emerging to quantify the information
- Community resilience We need to get better at public-private collaboration to share information, especially at local scale

Thank you

Mendiluce@wbcsd.org

