INTERNATIONAL ENERGY AGENCY

Electricity and CHP production from biomass – R D & D priorities and investment needs.

Prof Ralph E H Sims Renewable Energy Unit © OECD/IEA 2007

INTERNATIONAL ENERGY AGENCY

Heat, Electricity and CHP production from biomass and biofuels too! **RDD& Deployment** priorities and investment needs.

Prof Ralph E H Sims Renewable Energy Unit

BIOMASS RESOURCE

IPCC AR4 Biomass - cross cutting chapters

Industry	Agriculture	Forestry	Waste
Food, fibre and wood process residues	Energy and short rotation crops. Crop residues. Animal wastes	Forest harvesting and supply chain. Forest and agroforest residues	Organic MSW to energy. Landfill gas. Biogas.

BIOMASS RESOURCE

IPCC AR4 Biomass - cross cutting chapters

	Industry	Agriculture	Forestry	Waste
	Food, fibre and wood process residues	Energy and short rotation crops. Crop residues. Animal wastes	Forest harvesting and supply chain. Forest and agroforest residues	Organic MSW to energy. Landfill gas. Biogas.
Carbon capture and storage linked with biomass			version plants	Traditional biomass - fuelwood charcoal and animal dung from agricultural production

BIOMASS RESOURCE

IPCC AR4 Biomass - cross cutting chapters

Public R D & D investment in Renewables for IEA member countries (1990-2003 average)

Renewable energy R & D budgets

Biomass potential is very uncertain

- Biomass sourced from crop and forest residues and organic wastes has a *technical* potential of around 100 EJ/yr.
- Increasing the *market* potential of biomass will require integrated production of agricultural and forest systems and improved supply chain logistics.
- The present contribution from dedicated energy crops of 0.3 EJ/yr is projected to increase significantly over the next few decades – but competing land uses, water and nutrients are possible constraints.
- Present average crop yields of 5 20 oven dry t/yr (100 - 400 GJ/ha/yr) may be increased through genetic modification.
- Various analyses and projections for biomass uptake by 2030 at competitive costs range between 15 – 150 EJ/yr.

We know how to grow trees and crops, how to burn wood and wastes to generate heat and power, and how to distribute the energy services.

But further R D & D is needed to:
understand sustainable production methods;
develop more efficient bioenergy plants;
accurately measure the carbon offset benefits; and
link bioenergy with sustainable development.

Or not sustainable? Certification and world trad IEA Bigenercy IA Task 40 and GBE

Sustainable?

Aim for multi – product, biorefineries and to better understand all co-benefits. In Western Australia oil mallee trees have been planted in strips on arable land to overcome dryland salinity problems on 50 million ha. Trees are to be harvested every 3 – 4 years and processed through a gasifier to give: fine oils for the pharmaceutical industry; activated carbon for air filters, industrial applications etc; electricity generation from residues; renewable energy certificates; carbon credits.

Harvesting new energy crops remains a major challenge.

Energy input / output ratios for the entire biomass / bioenergy system are not yet well understood.

The carbon mitigation potential is also uncertain since it varies with the system employed.

Biofuels greenhouse gas abatement potential Well-to-wheel emission reductions

% reduction, compared to petroleum gasoline

Biomass has a low energy density.

Harvesting, transporting, storing and processing of biomass are major costs. Complex interactions exist between volume, weight and moisture content of biomass.

e.g for 85m³ truck and trailer unit

The sugar cane industry is well experienced in handling, transport and processing of "biomass"

Large plant sizes (typically 300,000t / yr) necessitate maximizing payloads in order to minimize delivered costs over long distances.

100MW steam265 MW electric60 MW district heating

66 bales / 60 t truck. Burns 400 bales / h

Yorkshire ARBRE 10MWe

Biomass Integrated Combined Cycle Gasification

Deployment of bioenergy projects

CO₂ capture and storage.

CO₂ capture and storage linked with bioenergy.

State of the art for Biomass Supply

Low

	Animal wastes	Short rotation forests	Negetative n grasses	
Market Potential	Sewa sludg Stra	ge je aw R	New energy crops e.g Jatropha F	
	Oil cro	os		
	Woody biomass			
High				

Strong Conversion Technology Development

Weak

Biomass R D D & D summary.

- Better assessment of the available biomass resource.
- Supply chain logistics and storage.
- New energy crop production.
- New and improved efficiency of bioenergy conversion processes.
- Bio-refinery concept analysis.
- Guidelines for bioenergy project development.

