

CO₂ Capture and Storage RD&D Priorities and Investment Needs

Jacek Podkanski, Kamel Bennaceur,

Using long term scenarios for R&D priority setting 15-16 February 2007 International Energy Agency, Paris

© OECD/IEA 2007

INTERNATIONAL ENERGY AGENCY

Drivers for R&D in CCS

Capture

- Cost reduction to reduce cost of electricity with CCS
- economics of enhanced recovery
- H2 Generation

Storage

- Risk management
- Trapping Mechanisms/Optimization of injection
- Monitoring & Verification
- ♦ Long-term interaction CO₂ Formation

CO₂ Capture and Storage - Cost Chain

INTERNATIONAL ENERGY AGENCY

Estimated characteristics of power plants with CCS

Fuel & Technology	Ref. Year	Invest. Cost (\$/kW)	Effic. (%)	Effic. Loss (%)	Addit. Fuel (%)	Capture Effic. (%)	Capture Cost (\$/t)	Electricity Cost (US¢/kWh)	Electricity cost no ccs (US¢/kWh)
Coal steam cycle, CA	2010	1850	31	12	39	85	33	6.8	3.8
Coal steam cycle, CA	2020	1720	36	8	22	85	29	6.1	3.8
Coal steam cycle, CA	2030	1675	42	8	19	95	25	5.7	3.8
IGCC, selexol, PA	2010	2100	38	8	21	85	39	6.7	3.8
IGCC, selexol, PA	2020	1635	40	6	15	85	26	5.7	3.8
NGCC CA	2010	800	47	9	19	85	54	5.7	3.8
NGCC oxyfuel	2020	800	51	8	16	85	49	5.4	3.8
Black liquor, IGCC	2020	1620	25	3	12	85	15	3.4	2.4
Biomass IGCC	2025	3000	33	7	21	85	32	10.1	7.5
IGCC SOFC	2035	2100	56	4	7	> 85	37	6.0	3.8
NGCC SOFC	2030	1200	66	4	6	> 85	54	5.4	3.8

INTERNATIONAL ENERGY AGENCY

Post-Combustion Status

				1		
Overall Status	Concept	EXP	ENP	Deployment		
Process Integration						
Boiler & Power Process						
DeSOx						
DeNOx						
CO2 Capture						
New Solvents						
CO2 Processing						
ZEP – WG1 - 2006						
INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE L'ENE						

RGIE

Pre-Combustion Status

Overall Status	Concept	EXP	ENP	Deployment	
Process					
Integration					
ASU					
Coal Gasification					
Nat Gas					
Reforming					
Syngas					
Processing					
CO2 Capture					
CO2 Processing					
High Efficiency					
H2 Gas Turbine					
ZEP – WG1 - 2006					

INTERNATIONAL ENERGY AGENCY

Oxy-Fuel Status

Overall Status	Concept	EXP	ENP	Deployment
Process Integration				
ASU				
Combustion process and Boiler				
Water/steam cycle - Particle removal				
DeSOx				
Flue Gas condensation				
CO2 Processing				

ZEP – WG1 - 2006

INTERNATIONAL ENERGY AGENCY

CO2 Capture Technologies

	Post-Combustion		Oxy-Fuel		Pre-Combustion	
Separation	CO2/N2		O2/N2		CO2/H2	
Capture technology	Current Emerging		Current	Emerging	Current	Emerging
Solvents (Absorption)	Chemical Solvents	Improved Solvents	N/A	Biomimetic solvents	Physical & Chemical Solvents	Improved chemical solvents
Membranes	Polymeric	Ceramic	Polymeric	lon transport membranes	Polymeric	Ceramic, Palladium
Solid sorbents	Zeolites	Carbonates	Zeolites	O2 chemical looping	Zeolites	Carbonates
Cryogenic	Liquefaction	Hybrid processes	Distillation	Improved distillation	Liquefaction	Hybrid processes

IPCC - 2005

INTERNATIONAL ENERGY AGENCY

CO₂ Storage Phases

Schlumberger - 2006

INTERNATIONAL ENERGY AGENCY

Major R&D programs

- IEA GHG R&D Programme
- EU FP5, FP6, and FP7 projects
- Japan: Rite > 60 MEuros pa
- Australia: CO2CRC
- USA:
 - ◆ DOE funding/Regional partnerships>€50 M € pa
 - Major University-led projects: GCEP, Stanford, MIT...
- Canada: NRCan, ARC, CANMET
- Germany: Cooretec
- Other International Projects: CCP ...
- China joint projects: EU, Canada, USA
- Private Sector

CCS Technology Roadmaps

European Union ZEP 2006 US: NETL 2006, CURC/EPRI Canada: CANMET Center 2006, CCTRM Australia: CO2CRC – 2004 CSLF – 2004 Japan – Clean Coal 2002 Germany, UK …

Components of FP7 Continued focus on Carbon Capture and Storage

 Re-introduction of Clean Coal Technology in recognition of the drive for greater efficiency whilst CCS is developed and deployed

 Technology Platform to advise on strategy and direction of these two elements

EU R&D Funding for CCS Technologies

Objectives:

• Capture

Less than 20% increase in energy cost by 2007
Less than 10% by 2012
Storage
Storage capacity within

Storage capacity within 30% by 2012MMV

•95 % accounting

European Technology Platform on Zero Emission Fuel Power Plants launched on December 2005
Outreach programs (COACH ...)

INTERNATIONAL ENERGY AGENCY

European Based R&D Programme

- CCS Projects
 - Enhanced Capture of CO₂ in Large Power Plant (ENCAP) Project – FP6 funded project
 - CO₂ from Capture and Storage (CASTOR) FP6 funded project dealing with post-combustion capture
 - ISCC (In-situ CO₂ Capture Technology for Solid Fuel Gasification) – FP6 funded project
 - Vattenfall taking the initiative 30 MW pilot plant study
- Polygeneration of Hydrogen and Electricity
 - HYPOGEN Project
- Material Development Programme
 - Component Test Facility for a 700°C Power Plant (COMTES700) – RFCS funded project – continuation of AD700 programme

USA Roadmap Development Principle

- Short-term: keep existing fleet in service; prepare for transition to n zero-emission future
 - SO₂, NO_x, Hg
 - Plant optimization and control
 - Reduced carbon intensity
- Long-term: add near-zero emissio.
 energy plants
 - IGCCs to market
 - Advanced materials
 - Ultra-high efficiency hybrid systems
 - CO₂ capture and storage

USA Roadmap Development

- Global Climate Change Initiative
 - set a target of 18% GHG emission intensity reduction by 2012 (baseline year 2001)
- Future Gen "Integrated Sequestration and Hydrogen Research Initiative"
 - US\$ 1 Billion 10 year programme
 - Target to demonstration a 275MW polygeneration plant by 2015
- Turbine of the Future Programme
 - Development of Gas Turbine firing with H2 rich fuel

USA Roadmap Development

- Clean Coal Technology
 - "Clean Coal Power Initiative" (2001 2011)
 - US \$ 2 Billion over 10 years
 - "Power Plant Improvement Initiative" (2001)
 - Focus on efficiency improvement and emission reduction
- VISION 21 Programme "21st Century Power Plant"
- Material Development Programme
 - Development of boiler material to achieve operating steam temperature greater than 750°C

IEA Greenhouse Gas R&D Programme

Vision 21 Programme - Strategy

Table 4.3 Performance Targets for Vision 21 Program							
Electrical Efficiency	60% (LHV)						
Cost competitiveness	Cost competitive with other energy systems						
Timing	Major benefits by 2005; subsystems and modules by 2012; commercial plant design by 2015						
NO _X /SO _X emissions	<4.3 µg/kJ						
PM emissions	<2.5 µg/kJ						
Hg emissions	<430 þg/kJ						
CO ₂ emissions	40 - 50% reduction with efficiency improvement; 100% reduction with CCS						
(Source: IEA 2003)							

(Source: IEA, 2003)

IEA Greenhouse Gas R&D Programme

German: COORETEC Programme

www.ieagreen.org.uk

IEA Greenhouse Gas R&D Programme

Australia – Coal21 Action Plan

Australian R&D Programme

- Oxy-Combustion Development
 - Japanese-Australian cooperation
 - Pilot Scale study for PC Boiler Retrofit (25 MWe) Callide A Project
- IGCC Demonstration Plant Programme
 - Demonstration of IGCC with carbon capture programme
 - Pilot plant study (16 MW and 65 MW)
 - 200 MW will be commissioned at Stanwell Power Station by 2010 depending on the outcome of the feasibility study
- IDGCC for brown coal
 - Target to commission 800 MWe IDGCC by 2010
 - 100 MW IDGCC demonstration project is currently at site selection and costing stage. Decision to proceed will be made by mid-2006
- Ultra Clean Coal Development Programme
 - International cooperation with the Japanese (Hyper Coal Project)
 - A relationship was developed with the Chinese power utilities

Japanese Vision - Development for 21st Century

	1990	2000	2010	2020
Environment limitation	CO ₂ reduction rate:10%	10 - 20 %	20 - 30 %	30 - 40%
Resource limitation	Efficiency increase: 1st generation - PFBC - PC (USC)	Efficiency increase: 2nd generation - coal combustion & gasification combined cycle power generation (IGCC, etc.) - DIOS, SCOPE21 - Reduction of emissions: 3 Tens	 Efficiency increase: Hybrid Generation fuel cell power generation based on coal gasification simultaneous power generation & chemical feedstock gas production hydrogen production from coal (CO₂ recovery and fixation) elimination of emissions 	 Zero-emission generation hydrogen from coal: fuel cel & hydrogen turbine combined cycle power generation, hydrogen driver automobilies concept of new coal industries: energy, iron and steel, and chemicals unified centre CO₂ conversion and utilization

IEA Greenhouse Gas R&D Programme

Japanese Roadmap Development - Starting Point

Japanese C3 Initiative toward ZET Coal Utilisation

www.ieagreen.org.uk

Japanese R&D Programme

- IGCC Demonstration Project
 - Demonstration of 250 MW IGCC (based on oxygen enriched air blown gasifier) to be operational by 2007
 - Target efficiency (LHV basis) ~ 48%
- Energy Application for Gas, Liquid and Electricity (EAGLE) Programme
 - Target to deploy 50 MWe IGFC by 2010 (for distributed electricity)
 - Target to deploy 600 MWe IGFC by 2020
- Oxy-Combustion Development
 - International cooperation with Australia
- Hyper-Coal Project (Ultra Clean Coal Project)
 - International cooperation with Australia
 - Target to produce coal processed to remove ash and other undesirable components which will be fired directly in a turbine.

Commercial Scale Capture Projects

INTERNATIONAL ENERGY AGENCY

Storage Projects

INTERNATIONAL ENERGY AGENCY

Summary

Drivers for R&D in CCS

- Capture cost
- Storage: Optimization and MMV
- Several technology roadmaps from North America, Europe, Japan and Australia
- International and regional coordination networks
- Announced commercial-scale projects are far from an emission-reduction "wedge" by 2020