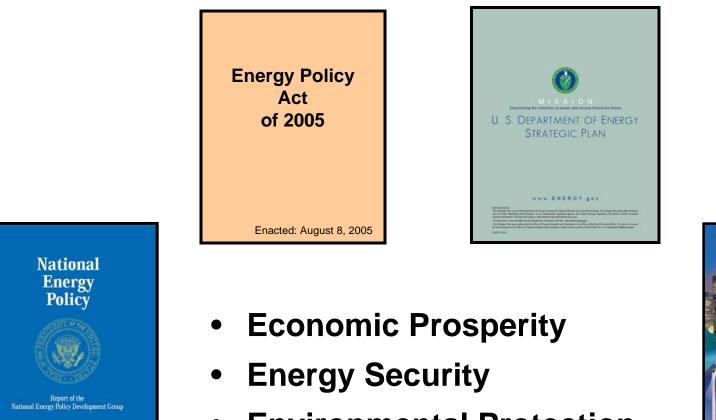
Perspectives from the United States

Using Long-Term Scenarios to Inform R&D Priority Setting

Dr. Robert C. Marlay Director, Science and Technology Policy Deputy Director, U.S. Climate Change Technology Program U.S. Department of Energy robert.marlay@hq.doe.gov

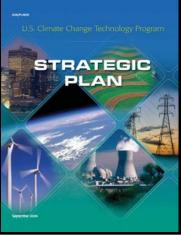
> IEA Energy R&D Experts Group February 15-16, 2007 Paris, France

R&D Planning and Prioritization System


Steps:

- National Energy and Long-Term Policy Goals *
- Visioning the Roles for Advanced Technology *
- Scenarios Analyses *
- Portfolio Analyses *
- Prioritization and Budgeting *
- High-Level Oversight and Appropriations
- R&D Program Evaluation and Feedback
- Supporting Policies for Int'l Cooperation & Deployment

* Focus of This Presentation. Other Parts are Necessary for a Complete Process.


Step 1 --National Energy and Long-Term Policy Goals

National Energy Strategy, Long-Term Policy Goals

May 2001

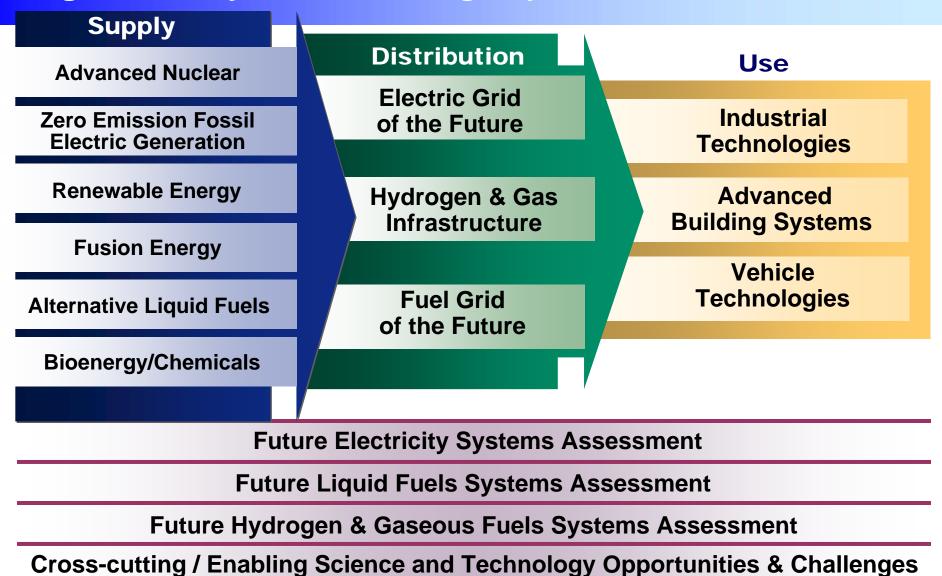
Environmental Protection

Visioning the Roles for Advanced Technology

Policy Goals

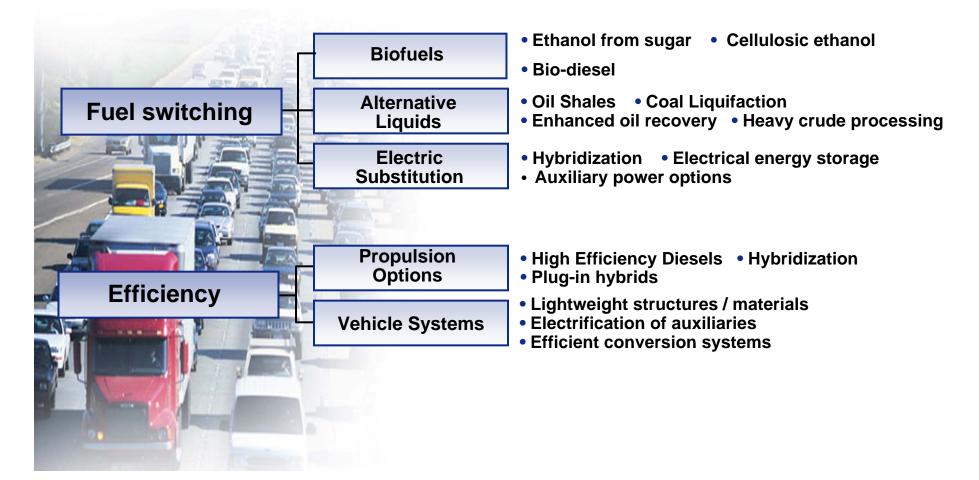
Technology Goals

•	Economic Prosperity	 Reliable, Affordable, Energy Supply Efficient Energy Use Efficient & Transparent Markets 	
•	Energy Security	 Alternatives to Oil Diversify from Insecure Sources Expand Practical Options 	


• Promote Clean Energy Use

 Environmental Protection

- Minimize Air & Water Pollution
- Minimize Impacts Land & Ecosystems
- Slow Growth of GHG Emissions
- Stabilize GHG Concentrations


Step 2 --Visioning the Roles for Advanced Technology

Our Analyses Begins with "Innovation Strands" Augmented by Cross-Cutting "System" Assessments

Energy Security – Focus on Transportation Fuels

Transportation

Energy Security – Focus on Transportation Fuels

- Near-Term: Efficiency options build on improved ICE technologies and hybrid drives
 - Light duty HE Diesels with NOx control
 - Flex-fuel engine management
 - Mild hybrid designs utilizing conventional batteries
- Near- to Mid-Term: Fuel switching provides a bridging option to offset oil demand
 - Current ethanol options can support expanded distribution systems
 - Coal to liquids is a viable option for benchmark crude prices over \$35-40 / bbl
- Longer-Term: Technology options provide a more stable and sustainable energy base for transportation systems
 - Cellulosic conversion essential to sustained bio-fuels market penetration
 - High density electric storage options are essential to broadening hybrid market penetration (2x improvement)
 - Viable CO2 disposal options essential to mitigating environmental impacts of coal-to liquids and unconventional hydrocarbon production
 - Hydrogen requires major technology and infrastructure breakthroughs

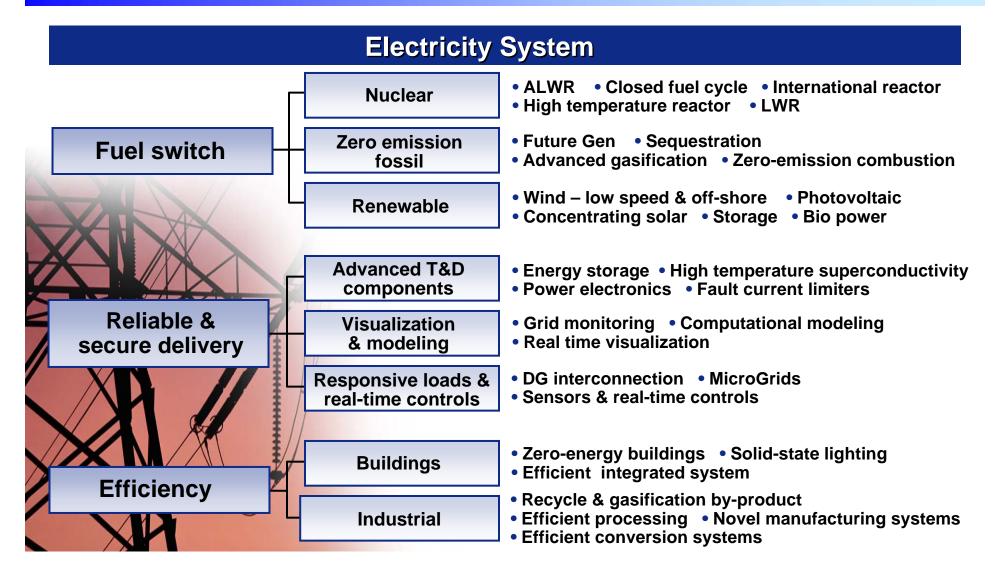
Key Technologies

Near Term Options < 2010

- Conventional, diesel and hybrid propulsion
- Coal to liquids (w/o sequestration)
- Corn starch / sugars to ethanol
- Efficient flexible fuel vehicles

Through 2015

- Coal to liquids (w/ CCS)
- 1st- generation conversion of cellulosic feedstock to biofuels
- Plug-in hybrids


Through 2025 and beyond

- Hydrogen vehicles
- In-situ oil shale production at scale
- Bioengineered energy crops

Supporting S&T

Technology maturation	Targeted Research	Discovery
and deployment	And Development	Research
 High efficiency diesel with effective environmental controls Improved gas – electric hybrid options Flexible fuel vehicles Lower cost corn starch to ethanol conversion Coal to liquids (without carbon capture and storage) 	 Light weight materials for vehicles High density, on-board electric storage Fuel cell technology Power electronics Combustion modeling and process optimization Cellulosic biofuels In-situ oil shale processing Carbon capture and storage for coal to liquids 	 Compact, high capacity, electric energy storage High density hydrogen storage Catalysis & control of chemical transformation Membrane separations Bioengineering for increased yield and ease of conversion of bio feedstocks Permeability science & engineering for EOR Nanoscale materials science

All Three Policy Goals (E, E &E) Served by a Modernized Electricity System

Several Key Technologies Offer the Foundation for Technology Options to Reduce CO₂ Emissions

Near Term Options < 2010

- Advanced Light Water Reactors "First Movers"
- EOR sequestration demo (Weyburn)
- Advanced gasification (w/o CCS)
- Photovoltaics
- Solar water heating
- On-shore wind (class 5+)
- Corn starch to ethanol
- Bio-diesel (<20% blend)
- Integrated building systems
- Efficient Industrial systems

Through 2015

- Advanced Light Water Reactors fleet
- Demonstration of fast reactors
- FutureGen demo in 2012
- SECA/hybrid fuel cell demo
- Low velocity and off-shore wind
- Next generation PV systems
- Concentrating solar power
- Biorefinery plants in operation
- First generation biofuels from lignocellulosic feedstock

Through 2025 and beyond

- First high-temperature reactor for H2 production
- Small modular reactor operational
- Integrated demo of thermal and fast reactors in closed fuel cycle
- Oxycombustion technology
- High power density electric energy storage
- Third generation high performance PV
- "Zero energy" buildings
- Advanced lignocellulosic conversion technologies
- High yield energy crops
- Solid state lighting

CO₂ Reduction Requires an S&T Portfolio Spanning Discovery to Commercial Innovation

Technology Maturation and Deployment

- Terrestrial sequestration options evaluated
- Large scale demonstrations of geologic sequestration
- Exploration and mapping of potential geologic sequestration sites
- Demonstration of sequestration in a range of geologic formations
- Near-term improvements for hydrogen production, delivery, storage and fuel cells
- Single crystal silicon solar cells
- Technology for cellulose-lignin separation
- Smart power electronics for switchable grid connections to enable utility scale renewables

Targeted Research And Development

- 3D seismic mapping and modeling of fluid flow in permeable geologic formations
- High temperature separation of CO, H2 and CO2
- Nanostructured catalyst-membrane composites for high temperature CO, H2, and CO2 separation
- New methods and tools for synthesizing new catalysts
- Efficient processes for production, energy storage and energy conversion
- Photocatalysis
- Interfacial processes
- Thin film organics for PV
- Efficient methods for enzymatic and thermochemical conversion of cellulose to sugars
- Efficient conversion of sugars other than glucose to ethanol
- Charge transport and separation in organic solar cells
- Tuning to the solar spectrum with dye sensitized solar cells

Discovery Research

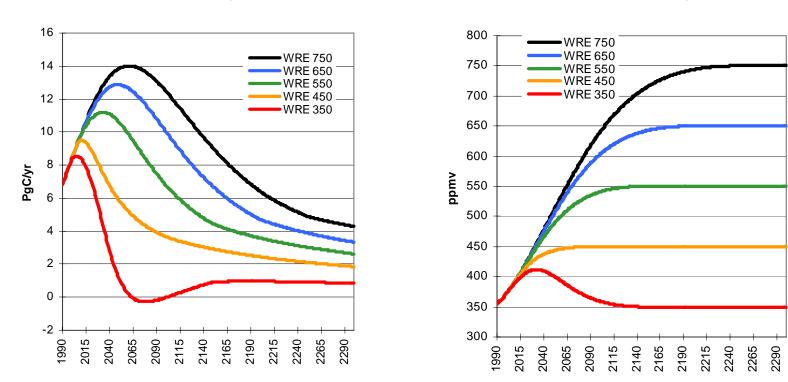
- Theoretical models for hydrodynamics in permeable media
- Catalysts for mineralization of CO2 to stable carbonates
- Computational models oxycombustion in turbines
- Photocatalytic processes for water splitting and hydrogen production
- Designer nano-structured catalysts
- Hydrogen storage materials and processes
- Quantum dot photoexcitation
- Theory and modeling of charge excitation and transport in quantum dot arrays
- Bioengineered crops
- Genetically modified photosynthesis
- Understand mechanism of biological cellulose and lignin degradation
- Bioengineer nitrogen fixation
- Bioengineer organisms and synthetic catalysts for cellulose to fuel

Comparative Analysis of Technology Strategies for "Energy" and "Climate Change"

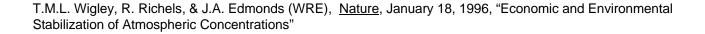
- Both Technology Strategies are Largely Aligned
- Climate Change is Technically More Challenging
- If Climate Change Strategy is Pursued Successfully, Energy Security Goals Will Also Be Achieved
- Selected Exceptions May Be Dealt with Separately
 - Coal to Liquids
 - Oil Shale
 - Methane Hydrates (in Ocean Continental Shelf)

Step 3 --Scenario Analysis

Planning & Analysis Under Conditions of Uncertainty

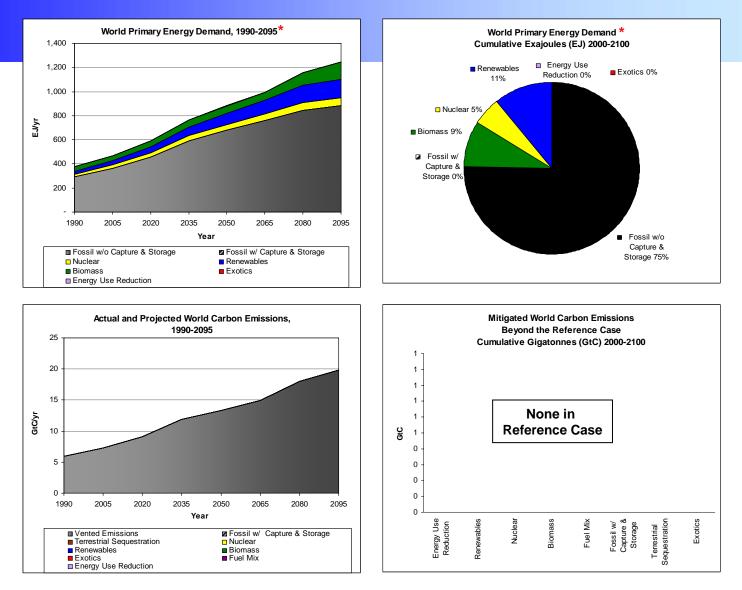

- Global Perspective
- 100-Year Planning Horizon
- Uncertainty Across GHG
 Stabilization Goals
- Technology Scenarios
- Technology Competitions
- Economic Benefits

Pacific Northwest National Laboratory Operated by Bathelis for the U.S. Doposition of Congre	FNNL-16078
	Climate Change Mitigation: An Analysis of Advanced Technology Scenarics
	L. Chake J. Luar M. Wine S. Küm M. Flocet S. Smith C. Izmunhde A. Thomson
	September 2006
	Prepared for the U.S. Department of Energy under Contract DE-AC05-708L01830

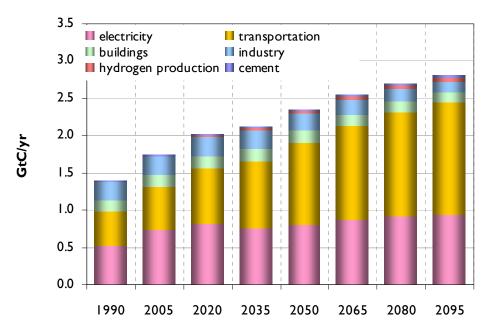

http://www.globalchange.umd.edu/

Concentration Trajectories

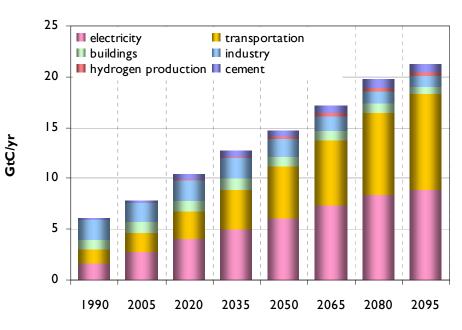
Planning Under Uncertainty – Alt. Paths to the UNFCCC Goal ...



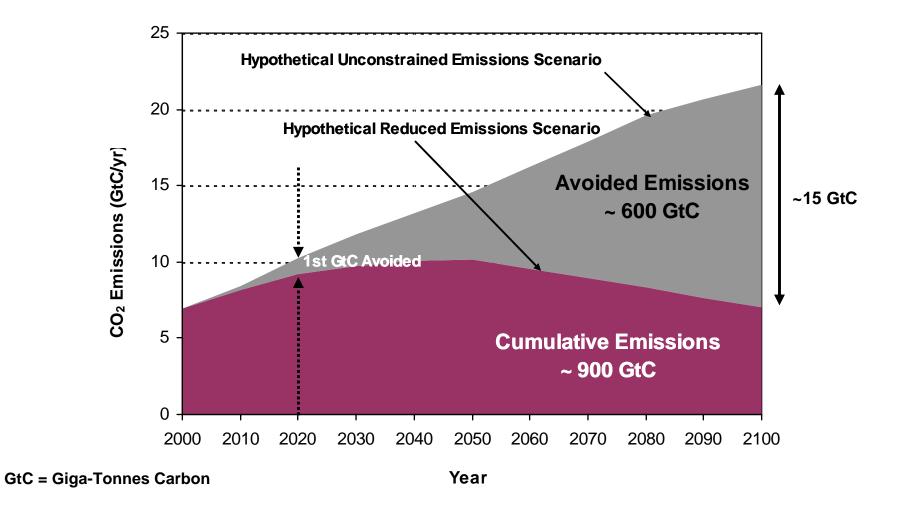
Emission Trajectories


Reference Case

(Including "Reference Case" Assumptions About Advancing Technology)


* Reference Case includes energy efficiency improvements (i.e., improvements in energy use per unit of economic output) at a an rate of change that is consistent with long-term historical rates.

Reference Case CO₂ Emissions, by sector



United States

The World

Mid-Range Example of A Reduced GHG Emissions Future

How Big is One Gigaton Per Year Of GHG Reduction?

Actions that provide 1 gigaton per year of carbon-equivalent mitigation for the duration of their existence:

- **Coal-Fired Power Plants**. Build 1,000 "zeroemission" 500-MW coal-fired power plants to supplant coal-fired power plants without CO₂ capture and storage. (Current global installed generating capacity is about 2 million MW.)
- **Geologic Storage**. Install 3,700 carbon storage sites like Norway's Sliepner project (0.27 MtC/year).
- **Nuclear**. Build 500 new nuclear power plants, each 1 GW in size, to supplant an equal capacity of coal-fired power plants without CO₂ capture and storage. This would more than double the current number of nuclear plants worldwide.
- Electricity from Landfill Gas Projects. Install 7,874 "typical" landfill gas electricity projects (typical size being 3 MW projects at non-regulated landfills) that collect landfill methane emissions and use them as fuel for electric generation.

- Efficiency. Deploy 1 billion new cars at 40 miles per gallon (mpg) instead of 20 mpg
- Wind Energy. Install 650,000 wind turbines (1.5 MW each, operating at 0.45 capacity factor) to supplant coal-fired power plants without CO₂ capture and storage.
- Solar Photovoltaics. Install 6 million acres of solar photovoltaics to supplant coal-fired power plants without CO₂ capture and storage (assuming 10% cell DC efficiency, 1700 kWhr/m2 solar radiance, and 90% DC-AC conversion efficiency).
- **Biomass Fuels from Plantations**. Convert a barren area about 15 times the size of Iowa's farmland (about 33 million acres) to biomass crop production.
- **CO**₂ **Storage in New Forest**. Convert a barren area about 40 times the size of Iowa's farmland to new forest.

Note: SRES (IPCC 2000) scenarios assume that all of these technologies will be used extensively prior to 2100.

Technology Scenarios Explore the Future

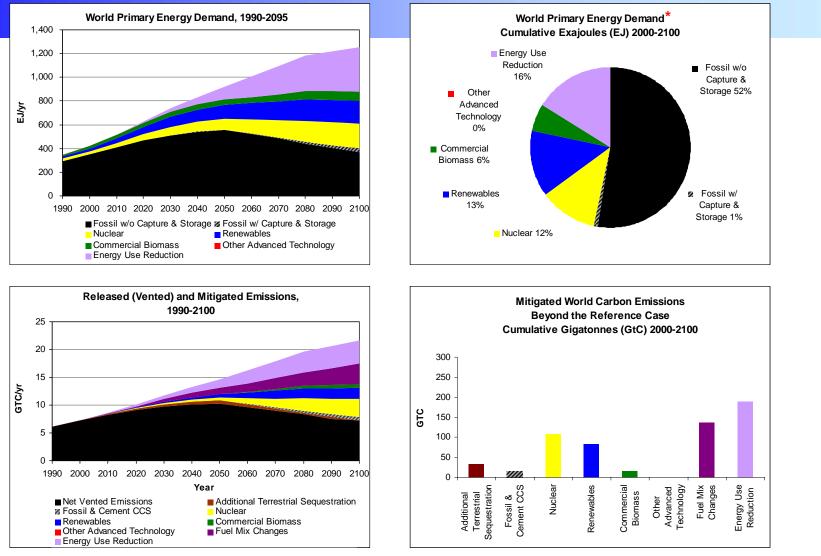
Technology Scenario #1: "Closing the Loop on Carbon"

Advanced Coal, Gasification, Carbon Capture, Sequestration, and Hydrogen Technologies Augment the Standard Suite of Technologies

Technology Scenario #2: "A New Energy Backbone"

Technological Advances in Renewable Energy and Nuclear Power Give Rise New Competitive Realities, Reducing Dominant Role of Fossil Fuels

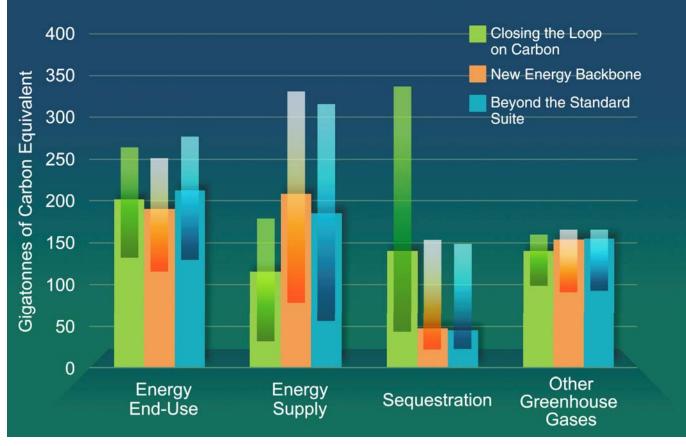
Technology Scenario #3: "Beyond the Standard Suite"


Novel and Advanced Technologies (e.g., Fusion, Large Scale Solar, and Bio-X) Emerge to Play Major Roles, Complementing the Standard Suite.

Common Characteristics Across Scenarios:

- ✓ Hydrogen and Liquid Biofuels Become Significant Energy Carriers
- ✓ The Full Potential of Conventional Oil & Gas is Realized
- ✓ Dramatic Gains in Energy Efficiency Occur
- ✓ Successful Management of other GHGs
- ✓ Early Market Penetration of Low-Cost Terrestrial Sequestration

New Energy Backbone for High Emissions Constraint


(At approximately the 550 ppm level of stabilized concentrations)

* Reference Case includes efficiency improvements (i.e., improvements in energy use per unit of economic output) at an annual rate of change that is consistent with long-term historical rates. Shaded areas for "Energy Use Reduction" indicate accelerated improvements, demand reductions, and other economic substitutions.

Integrated Results

Potential Contributions to Emissions Reduction

Source: Placet M; Humphreys, KK; Mahasenan, NM. *Climate Change Technology Scenarios: Energy, Emissions and Economic Implications*. Pacific Northwest Nation Laboratory, PNL-14800, August 2004. Available at: <u>http://www.pnl.gov/energy/climatetechnology.stm</u>. Image updated: April 2006

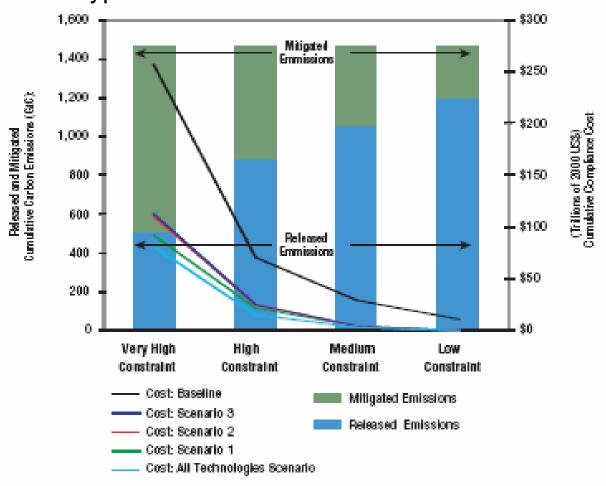
Quantities – Potential 100-Year Reductions

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	250 - 270	190 - 210	150 - 170	110 - 140
Goal #2: Reduce Emissions from Energy Supply	180 - 330	110 - 210	80 - 140	30 - 80
Goal #3: Capture and Sequester Carbon Dioxide	150 - 330	50 - 140	30 - 70	20 - 40
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	160 - 170	140 - 150	120 - 130	90 - 100

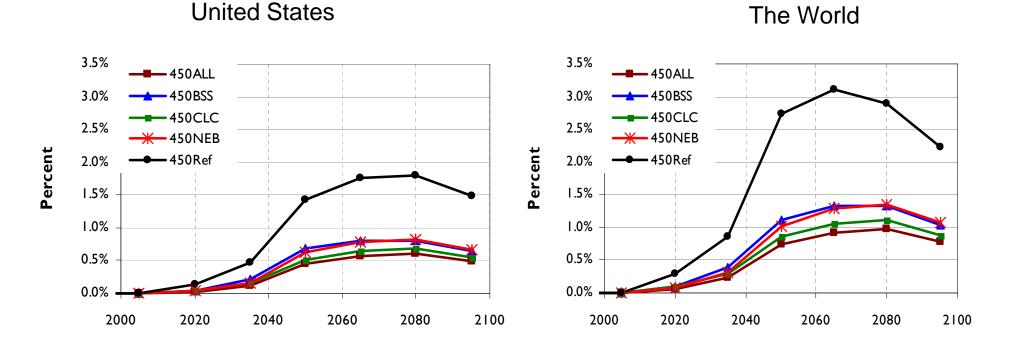
Estimated cumulative GHG emissions mitigation (GtC) from accelerated adoption of advanced technologies over the 21st century, by strategic goal, across a range of hypothesized GHG emissions constraints.

Source: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

Timing

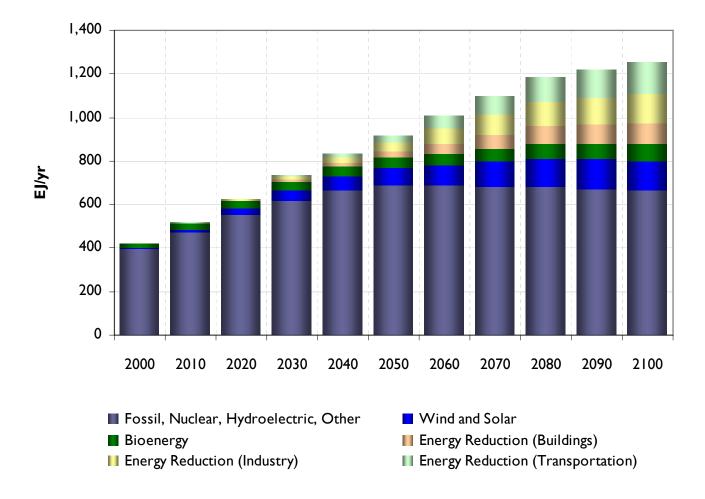

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	2010 - 2020	2030 - 2040	2030 - 2050	2040 - 2060
Goal #2: Reduce Emissions from Energy Supply	2020 - 2040	2040 - 2060	2050 - 2070	2060 – 2100
Goal #3: Capture and Sequester Carbon Dioxide	2020 - 2050	2040 or Later	2060 or Later	Beyond 2100
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	2020 - 2030	2050 - 2060	2050 - 2060	2070 - 2080

Estimated timing of advanced technology market penetrations, as indicated by the first GtC-eq./year of incremental emissions mitigation, by strategic goal, across a range of hypothesized GHG emissions constraints.

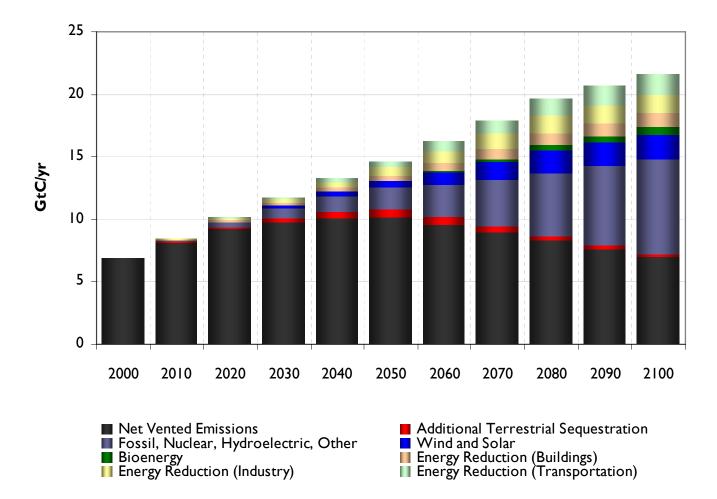

Source:: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

Potential Cost Reductions to 2100

Comparative analysis of estimated cumulative costs over the 21st century of GHG mitigation, with and without advanced technology, across a range of hypothesized GHG emissions constraints.



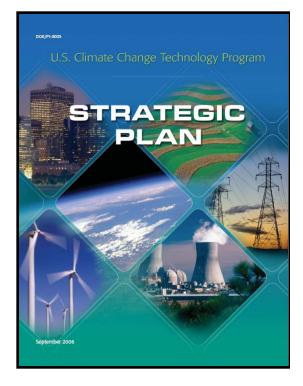
GDP Losses in CCTP scenarios



29

High Constraint NEB: Annual Energy Shares

High Constraint NEB: Annual Emissions, Vented and Mitigated



Step 4 --Portfolio Analysis

Climate Change Technology Strategy

Strategic Goals:

- 1. Reduce Emissions From Energy End Use & Infrastructure
- 2. Reduce Emissions From Energy Supply
- 3. Capture & Sequester CO₂
- 4. Reduce Emissions From Non-CO₂ Gases
- 5. Improve Capabilities to Measure & Monitor GHG
- 6. Bolster Basic Science

www.climatetechnology.gov

Technologies That Will Make A Difference

	NEAR-TERM	MID-TERM	LONG-TERM
GOAL #1 Energy End-Use & Infrastructure	Hybrid & Plug-In Hybrid Electric Vehicles Engineered Urban Designs High-Performance Integrated Homes High Efficiency Appliances High Efficiency Bollers & Combustion Systems High-Temperature Superconductivity Demonstrations	Fuel Cell Vehicles and H ₂ Fuels Low Emission Alrcraft Solid-State Lighting Ultra-Efficient HVACR "Smart" Buildings Transformational Technologies for Energy-Intensive Industries Energy Storage for Load Leveling	Widespread Use of Engineered Urban Designs & Regional Planning Energy Managed Communities Integration of Industrial Heat, Power, Process, and Techniques Superconducting Transmission and Equipment
GOAL #2 Energy Supply	IGCC Commercialization Stationary H₂ Fuel Cells Cost-Competitive Solar FV Demonstrations of Cellulosic Ethanol Distributed Electric Generation Advanced Fission Reactor and Fuel Cycle Technology	FutureGen Scale-Up H ₂ Co-Production from Coal/Biomass Low Wind Speed Turbines Advanced Biorefineries Community-Scale Solar Gen fV Nuclear Plants Fusion Pliot Plant Demonstration	 Zero-Emission Fossil Energy H₂ & Electric Economy Widespread Renewable Energy Bio-Inspired Energy & Fuels Widespread Nuclear Power Fusion Power Plants
GOAL #3 Capture, Storage & Sequestration	C&LF & CSRP Post Combustion Capture Oxy-Fuel Combustion Enhanced Hydrocarbon Recovery Geologic Reservoir Characterization Solis Conservation Dilution of Direct Injected CO ₂	Geologic Storage Proven Safe CO ₂ Transport Infrastructure Solis Uptake & Land Use Ocean CO ₂ Biological Impacts Addressed	 Track Record of Successful CO₂ Storage Experience Large-Scale Sequestration Carbon & CO₂ Based Products & Materials Safe Long-Term Ocean Storage
GOAL #4 Other Gases	Methane to Markets Precision Agriculture Advanced Refrigeration Technologies PM Control Technologies for Vehicles	 Advanced Landfill Gas Utilization Soll Microbial Processes Substitutes for SF₆ Catalysts That Reduce N₂O to Elemental Nitrogen in Diesel Engines 	 Integrated Waste Management System with Automated Sorting, Processing & Recycle Zero-Emission Agriculture Solid-State Refrigeration/AC Systems
GOAL #5 Measure & Monitor	Low-Cost Sensors and Communications	Large Scale, Secure Data Storage System Direct Measurement to Replace Proxies and Estimators	 Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

CCTP Sponsored R&D Portfolio Reviews

- For Each CCTP Strategic Goal:
 - Assess Adequacy of the R&D Portfolio to Make Progress Towards 6 CCTP Goals
 - Identify Strengths, Weaknesses, Gaps & Opportunities
 - Prioritize Gaps & Opportunities
 - Make Selective Recommendations

"Results of a Technical Review of the U.S. Climate Change Technology Program's R&D Portfolio," May 2006 www.climatetechnology.gov

Technologies for Goal #1: Reduce Emissions from End Use and Infrastructure

	NEAR-TERM	MID-TERM	LONG-TERM
Transportation	Hybrid & Plug-In Hybrid Electric Vehicles Clean Diesel Vehicles Alternative and Fuel-Flexible Vehicles Improved Batteries, Energy Storage Power Electronics Engineered Urban Designs Reduction of Vehicle Miles Traveled Improved Air Space Operations	Fuel Cell Vehicles and H ₂ Fuels Efficient, Clean Heavy Trucks Cellulosic Ethanol Vehicles Intelligent Transport Systems Integrated Regional Planning Low-Emission Alrcraft Intercity Transport Systems	 Zero-Emission Vehicle Systems Optimized Multi-Modal Intercity & Freight Transport Widespread Use of Engineered Urban Designs & Regional Planning Very Low Aviation Emissions (all 6HGs)
Buildings	High-Performance, Integrated Homes Energy-Efficient Building Materials High-Efficiency Appliances Solar Control Windows	"Smart" Buildings Solid-State Lighting Ultra-Efficient HVACR Intelligent Building Systems Neural Net Building Controls	Energy Managed Communities Low-Power Sensors with Wireless Communications
Industry	 Improved Processes In Energy-Intensive Industries High-Efficiency Bollers and Combustion Systems Greater Waste Heat Utilization Improved Recyclability and Greater Use of Byproducts Bio-Based Feedstocks 	Transformational Technologies for Energy- Intensive Industries C&CO ₂ Managed Industries Superconducting Electric Motors Efficient Thermoelectric Systems Advanced Separation Technologies Low-Emission Cement Alternatives Water and Energy System Optimization	 Integration of Industrial Heat, Power, Processes and Techniques High-Efficiency, All-Electric Manufacturing Widespread Use of Bio-Feedstocks Closed-Cycle Products & Materials
Electric Grid & Infrastructure	Distributed Generation Smart Metering & Controls for Peak Shaving Long-Distance DC Transmission High-Temperature Superconductivity Demonstrations Power Electronics Composite Conductor Cables	 Energy Storage for Load Leveling Neural Net Grid Systems Advanced Controls and Power Electronics 	 Superconducting Transmission and Equipment Standardized Power Electronics Wireless Transmission

Results for Goal #1 -Energy End-Use

Goal Sub-Area	Current Portfolio Strengths	Gaps & Opportunities
Transportation (SP- 4.1)	 Light Vehicles/Hybrids Heavy Vehicles Alternative Fuel Vehicles Intelligent Transport Systems Aviation Fuel Efficiency 	 Plug-in Hybrid Electric Vehicles Advanced Thermoelectric Concepts to Convert Temperature Differentials Studies of Advanced Urban-Engineering Concepts to Reduce VMT Advanced Freight and Low-Emission Aviation Systems New Combustion Regimes with Fuel Flexibility, Near-Zero Regulated Emissions
Buildings (SP- 4.2)	 Building Envelope Building Equipment Integrated Design/Operation Albedo/Urban Heat Island (EPA) 	 Advanced Sensors, Communications and Controls for Smart Buildings Smart Roofs, Walls and Insulation Integration of Distributed Energy/Renewables Ultra-Efficient HVACR
Industry (SP- 4.3)	 Energy Conversion & Utilization Resource Recovery & Utilization Industrial Process Efficiency Enabling Technologies 	 Advanced Applications of Biotechnology Substitutes for Steel, Cement, Limestone, and Other High-GHG Products Industrial Waste Heat Reduction Computational Modeling and Process Simulation for System Optimization Water and Energy System Optimization Life-Cycle Analysis for GHG Emissions
Infrastructure (SP- 4.4)	 High Temperature Superconductivity Transmission & Distribution Distributed Generation Energy Storage Sensors/Controls Power Electronics 	 Large-Scale Energy Storage to Solve Intermittency Issues Materials Science for Efficient AC/DC Conversion Nanotechnology for Efficient Transmission of Energy Real-Time Observability, Monitoring and Control of Electric System Conditions

Technologies for Goal #2: Reducing Emissions from Energy Supply

_			
	NEAR-TERM	MID-TERM	LONG-TERM
Fossil Power	 IGCC Commercialization FutureGen Demonstration Solid Oxide Fuel Cells More Efficient, Lower-Cost, Cleaner Coal Plants 	 Pre-Combustion Technology for Cleaner Coal-Based Electricity Generation Zero-Emission Coal Plants (FutureGen) H₂ Co-Production from Coal/Biomass 	Zero-Emission Fossil Energy
Hydrogen	 Integrated Stationary Fuel Cell System Codes & Standards Demonstrations of Renewable Hydrogen Production 	Low-Cost H ₂ Storage & Delivery H ₂ Production from Nuclear H ₂ Production from Renewables Renewable-H ₂ -Powered Fuel Cell Vehicles	• H ₂ & Electric Economy
Renewables	Lower-Cost Wind Power Biodiesel, Demos of Cellulosic Ethanol Photovoltaics on Buildings Cost-Competitive Solar PV 1st Generation Biorefinery Distributed Generation Systems	Low-Wind-Speed Turbines Advanced Biorefineries Cellulosic Biofuels Community-Scale Solar Photolytic Water Splitting Energy Storage Options	 Widespread Renewable Energy Blo-Engineered Biomass Bio-Inspired Energy & Fuels
Nuclear Fission	Advanced Fission Reactor and Fuel Cycle Technology New Fuel Forms and Materials	GeniV Nuclear Plants Closed Proliferation-Resistant Fuel Cycles Minimization of Wastes Requiring Geological Disposal	Widespread Nuclear Power Advanced Concepts for Waste Reduction
Fusion Power	Greater Understanding of Plasmas Demonstration of Burning Plasmas (ITER) Identification of Technology Options Understand Potential of High-Energy- Density Physics Research	Fusion Pilot Plant Demonstration	• Fusion Power Plants

Results for Goal #2 -Energy Supply

Goal Sub-Area	Current Portfolio Strengths	Gaps & Opportunities
Low-Emissions Fossil-Based Power & Fuels (SP- 5.1)	 Advanced Power Systems Distributed Generation – Fuel Cells Co-Production Hydrogen 	 Integration with Carbon Capture and Storage Methane Hydrates
Hydrogen (SP- 5.2)	 Hydrogen From Fission/Fusion Hydrogen From Fossil/Alternative Hydrogen Storage & Use Systems Technology Validation Hydrogen Infrastructure/Safety 	 Integration of Electricity and H₂ Transportation Sectors Advanced Concepts in Hydrogen Storage Hydrogen Co-Production and Integration with CO₂ Capture
Renewable Energy & Fuels (SP- 5.3)	 Wind Energy Photovoltaics, Photoconversion Solar, Concentrating Bio-Fuels/Biomass 	 Biomass Genomics and Alternative Fuels, Materials, and Chemicals Systems Approach to Waste Management, Including Waste-to-Energy Solar Fuels (Artificial Photosynthesis) Advanced Solid-State Thermoelectrics Wave Energy and Tidal Dams
Nuclear Fission (SP- 5.4)	 Nuclear: Near-Term Deployment GenIV AFCI (GNEP) 	 Advanced Fuel Resources and Fuel Cycles for Fission (Including Thorium) Nano-Engineered Materials and Heat Transfer Technology Next-Generation Nuclear Reactors Including Dry Cycle Nuclear Plants Long-Term Nuclear Computations
Fusion Energy (SP- 5.5)	 Fusion Sciences ITER 	 High-Voltage Power Electronics for Fusion Energy Systems Advanced Sensors for Measurement of Plasma and Optical Parameters Inertial Fusion Energy High-Temperature Superconducting Magnets Nano-Engineered Materials for Fusion Systems

Technologies for Goal #3: CO₂ Capture, Storage, and Sequestration

	NEAR-TERM	MID-TERM	LONG-TERM
Carbon Capture	CSLF and CSRP Post Combustion Capture Pre-Combustion Technologies Oxy-Fuel Combustion Oxygen Separation Technologies	 Capability to Capture Most CO₂ Emissions Novel Capture Technologies Low-Cost Oxygen Biomass Coupled with CCS 	Novel In-Situ CO ₂ Conversion Capture CO ₂ Directly from Atmosphere
Geologic	Reservoir Characterization Safety, Health, and Environmental Risk Assessment Understand Underground CO ₂ Reactions & Microbial Processes Enhanced Hydrocarbon Recovery Enhanced Coal-Bed Methane Large-Scale Demonstration CO ₂ Transport Network Design	 Geologic Storage Proven Safe Well Sealing Techniques Demonstrated Mineralization: Solid Carbonates Reliable and Accurate Inventory Monitoring Well-Established CO₂ Transport Infrastructure 	 Sufficient CO₂ Storage Capacity Track Record of Successful CO₂ Storage Experience
Terrestrial	Reforestation Solis Conservation Vegetation in Urban Settings	 Solis Uptake & Land Use Inter-relationship among CO₂, CH₄ & N₂O Sequestration Decision Support Tools M&M Tools to Validate Terrestrial Sequestration Bio-Based & Recycled Products 	 Biological Sequestration Large-Scale Sequestration Minimal Deforestation Carbon & CO₂ Based Products & Material
Ocean	• Effective Dilution of Direct Injected CO ₂	Ocean CO ₂ Biological Impacts Addressed Carbonate Dissolution / Alkalinity Addition	 Safe Long-Term Ocean Storage

Results for Goal #3 -Carbon Capture and Storage

Goal Sub-Area	Current Portfolio Strengths	Gaps & Opportunities
Carbon Capture (SP- 6.1)	 Carbon Capture CO₂ Separation 	 Advanced Materials for CO₂ Separations, Transport and Storage Integrated Modeling Framework to Evaluate CCS Technologies Technologies that Capture CO₂ Directly from Atmosphere Ionize CO₂ to Enable Separation via Electric Field Oxygen Separation Technologies: Oxyfuels
Geologic Storage (SP- 6.2)	 Knowledge Base for CO₂ Storage Novel Sequestration Systems Health, Safety & Environment Regional Partnerships International Partnerships 	 Understand CO₂ Movement in Hydrocarbon-Bearing Formations Understand Underground CO₂ Geochemical and Microbial Processes CO₂ Geologic Storage Engineering (Pore Size, Mineral Trapping, Leak Detection) Large-Scale Demonstration of CO₂ Storage Combine CO₂ Storage, In-Situ Refining, Gasification, Power Generation, etc
Terrestrial Sequestration (SP- 6.3)	 Land Management Biotechnology (Soil Carbon) Improved M&M 	 Systems Approach across Sectors and Gases (Energy Crops, Seq., Nitrogen) Potential from Land-Use Mgt (e.g., Sustainable Forestry vs. Deforestation) Optimize Biomass Genomics for Fuels, Materials, Chemicals, & CO₂ Storage Vegetation in Urban Settings (Sequestration and Heat Island Effect)
Ocean Sequestration (SP- 6.4)	• None	 Basic Research in Ocean Chemistry and Bio-Cycles Ocean Acidification Issues Ocean Direct Injection

Technologies for Goal #4: Reduce Emissions of Other Gases

	NEAR-TERM	MID-TERM	LONG-TERM
Methane from Energy & Waste	Bioreactor Landfill Technology Methane to Markets New Drilling Techniques for Recovery of Coal bed Methane Leak Detection, Measurement, and Mitigation Technologies for Oil & Natural Gas Systems	 Advanced Landfill Gas Utilization (e.g., Fuel Cells, Microturbines), Cover, and Collection Technologies Ventilation Air Methane Technology Advanced End-Use Technologies to Use Methane at Remote Well Sites 	 Integrated Waste Management System with Automated Sorting, Processing & Recycle Automated Coal Mining to Eliminate Methane Emissions Smart Pipes and Self-Repairing Pipelines
Methane & N ₂ 0 from Agriculture	Anaerobic Digesters that Produce Heat and Electricity Precision Agriculture Improved Livestock Production Efficiency	 Better Understand Relationship among CH₄, CO₂, N₂O, N₂ & C in Agriculture Soli Microbial Processes Prescription Release of Nutrients and Chemicals for Crops Genetically Designed Forages and Bacteria to Improve Digestion Efficiency 	• Zero-Emission Agriculture
High GWP Gases	Advanced Refrigeration Technologies (Distributed and Secondary-Loop) Advanced Abatement, Recovery, and Recycling Technologies Advanced Aluminum Smeitling Processes to Reduce Anode Effect	 Alternative Refrigeration Fluids (Non-GH6) Substitutes for SF₆ in High-Voltage Applications and Magnesium Production Inert Anode to Eliminate PPC Emissions in Aluminum Production 	 Solid-State Refrigeration/AC Systems New Equipment and Process Designs that do not Require High-GWP Gases
N ₂ 0 from Combustion	 Catalytic Reduction of N₂O In Nitric Oxide Plants Better Understand N₂O Emissions from Vehicles 	 Catalysts That Reduce N₂O to Elemental Nitrogen In Diesel Engines Understand Role of N Compounds from Combustion with Solis and N₂O 	Advanced Vehicles and Non-Carbon Based Fuels
Ozone Precursors & Black Carbon	Particulate Matter Control Technologies for Vehicles Reflective Roots to Reduce Heat Island Effects Better Understand Effects of Ozone Precursors & Black Carbon	 Model Linkages Between Air Pollution and Climate Change Jet Fuel Additives to Minimize Black Carbon and Soot 	***********

Results for Goal # 4 -Other Gases

Goal Sub-Area	Current Portfolio Strengths	Gaps & Opportunities
Methane Emissions From Energy & Waste (SP- 7.1)	 Landfill Gas Programs (EPA +) Coal Mine/Bed Methane (EPA +) Methane to Markets (EPA +) 	 Automated Mining Systems that Eliminate Methane Emissions Tagging and Sorting Technologies to Convert Waste to Useful Products Distributed Waste Management Systems: Waste to Fuels or Electricity Improved Combustion in Natural Gas Flaring Bioreactor Landfills Using Genetically Engineered Organisms Self-Repairing, Leak-Free Gas Pipelines and LNG Conversion Systems
Methane and N ₂ O Emissions from Agriculture (SP- 7.2)	 Advanced AG – N₂O Reduction Manure Management Enteric Emissions Reductions 	 Precision Agriculture and Biosensors Improved Understanding of Rumen Microbial Processes and Nutrient Needs Improved Separation Processes and Stabilization & New Types of Digestors Improved Understanding of Specific Soil Microbial Processes
Emissions of High GWP Gases (SP- 7.3)	 Substitutes for High GWP Gases Substitutes for SF₆ Refrigeration - HFC Reduction 	 Alternatives to SF₆ in HV Electric Transformers, Circuit Breakers, etc Eliminate GHG-Emitting Working Fluids in Refrigeration and Air-Conditioning Alternatives to SF₆ & PFCs in Chem. Vapor Deposition, Cleaning, Etching, etc Alternative Cover Gases to Replace SF₆ for Magnesium Melt Protection New Technologies & Controls to Reduce Aluminum Smelting PFC Emissions
N ₂ O Emissions from Combustion & Industry (SP- 7.4)	 N₂O Abatement – Nitric Acid N₂O Abatement – Transportation 	 Understanding of Formation and Life of Nitrous Oxides from Combustion Advanced Catalytic Reduction of N₂0 from Combustion Sources
Tropospheric Ozone Precursors & Black Carbon (SP- 7.5)	• Abatement – TOPs & BC	 Analysis of Role of Black & Organic Carbon and Tropospheric Ozone Precursors Retrofit Designs for NO_x and Particulate Control for Diesel Engines Reduce NO_x Emissions from On-Road Heavy-Duty Diesel Engines Jet Fuel Additives Computational Models of Soot Formation

Technologies for Goal #5: Measure and Monitor Emissions

	NEAR-TERM	MID-TERM	LONG-TERM
Energy Production & Efficiency Technologies	M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates	Sensor Networks Remote Sensing Prototype Direct Measurement to Replace Proxies and Estimates	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Carbon Capture, Storage, & Sequestration	 M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates Ability to Assess the Integrity of Geologic Reservoirs Improved Leak Detection from Capture and Pipelines 	 Sensor Networks Remote Sensing Prototype 	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Other GHGs	M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates	Sensor Networks Remote Sensing Prototype M&M Techniques for Agricultural Sources	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Integrated M&M Systems Architecture	 Identification of Metrics, Criteria, Sources, and Requirements for Measurements Comprehensive Vision of Integrated Systems Architecture and Technology Needs 	 Model and Data Specification Large Scale, Secure Data Storage System Data Visualization Tools M&M Processes Incorporated Into Design of Climate Change Technologies 	 Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

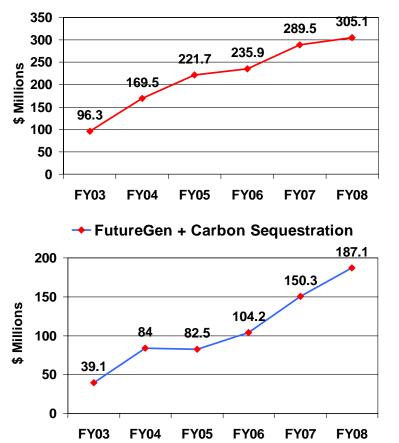
Results for Goal # 5 -Measurement and Monitoring

Goal Sub-Area	Current Portfolio Strengths	Gaps & Opportunities	
Energy Production/ Efficiency (SP- 8.2)	M&M for Energy Efficiency	 Protocols for Multiple Assessments of Performance of Energy End Uses Improvements in Temporal and Spatial Resolution Measurements Satellite-Based Sensors for Direct Measurement of CO₂ and Other Gases Wireless Micro-Sensor Networks for Migration, Uptake, and Distribution of GHGs 	
CO ₂ Capture & Sequestration (SP- 8.3.1)	M&M for Geologic Storage	 Remote Subsurface/Near Surface CO₂ Monitoring Improvements in Leak Detection from Separation and Capture and Pipeline Systems 	
Terrestrial Sequestration (SP- 8.3.2)	M&M for Terrestrial Seq.	Global Network Monitoring and Measurement of Terrestrial Carbon	
Oceanic Sequestration (SP- 8.3.4)	• None	Measurement and Tracking of Injected CO ₂	
Other Gases (SP- 8.4)	M&M for Other Gases	 Space-Based Technologies for Long-Term Monitoring of GHGs and Aerosols N₂O Measurement Techniques for Emerging Gasoline and Diesel Engines Advanced, Real-Time Measurement for Fine Particulate Matter and Soot Nanosensors for Pipeline Leak Detection 	
Integrated M&M System Architecture (SP- 8.5)	M&M Observation System	 Integrated M&M System Architecture Wide Area Networks that Provide Robust (sensor to Sensor) Communications Platforms for Spatial Scales and Measurement Layers (Ground, Air, & Space) Rapid Prototyping and Benchmarking of Existing Integrated System Components Integrated M&M Field Experiment 	

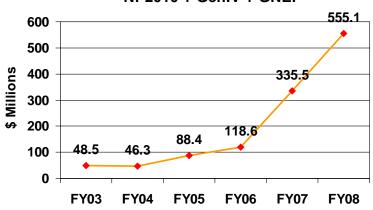
Step 5 – Prioritization & Budgeting

Three Broad Portfolio Planning Principles

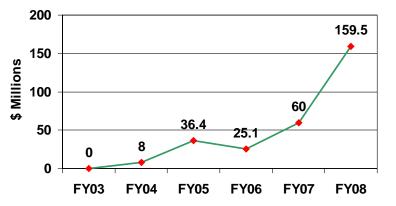
- 1. The Whole of the Individual R&D Investments Should Constitute a Balanced and Diversified Portfolio
 - No Single Technology Will Likely Meet the Challenge Alone
 - Investing in R&D in Advanced Technologies Involves Risk
 - Diverse Array of Technology Options can Hedge Against Risk and Provide Flexibility in the Future
- 2. Ensure That Factors Affecting Market Acceptance are Addressed
 - Each Technology Must be Integrated Within a Larger Technical System and Infrastructure
 - Market Acceptance of Technologies is Influenced by a Myriad of Social and Economic Factors
 - CCTP's Portfolio Planning Process Must be:
 - Informed by, and Benefit From, Private Sector and Other Non-federal Inputs,
 - Examine the Lessons of Historical Analogues for Technology Acceptance, and
 - Apply Them as a Means To Anticipate Issues and Inform R&D Planning
- 3. The Anticipated Timing Regarding the Commercial Readiness of the Advanced Technology Options is Important
 - Energy Infrastructure has a Long Lifetime Change in Capital Stock Occurs Slowly
 - Some Technologies May Need to be Available and Moving Into the Marketplace Decades Before Their Maximum Market Penetration is Achieved


Portfolio Planning and Investment Criteria

- Maximizing Expected Return on Investment
 - Expected Contributions to the Attainment of Goals
 - Cost-Effectiveness, Improved Productivity
- Acknowledging the Proper and Distinct Roles for the Public and Private Sectors
 - Consideration of Time to Deployment
- Focusing on Technology with Large-Scale Potential
 - Every Technology Option has Limits
 - Adaptable on a Global Scale and Result in Large Mitigation Contributions
- Sequencing R&D Investments in a Logical, Developmental Order
 - Times When Different Technologies Need to be Available and Cost-Effective
 - Early Resolution of Critical Uncertainties
 - Demonstrate Early Success or Feasibility if Needed for Other Technologies


Priorities for FY 2008

Efficiency	 Vehicle Technology Buildings Industry
Supply	 NP2010, GenIV, GNEP Clean Coal and FutureGen H₂ & Fuel Cells Biomass/Biofuels ITER Solar
CO ₂ CCS	 CO₂ Capture and Sequestration Terrestrial Sequestration
Other Gases	 Methane to Markets (M2M) USDA and EPA Programs


FY 2008 Budget Request – Key Initiatives

NP2010 + GenIV + GNEP

Innovative International Partnerships

Group on Earth Observations: 65 governments and 40+ organizations members; designing and implementing a new Global Earth Observation System of Systems .

Carbon Sequestration Leadership Forum: 22 members; focused on CO₂ capture & storage.

International Partnership for the Hydrogen Economy: 17 members; organizes, coordinates, and leverages hydrogen RD&D programs.

Generation IV International Forum: 10 members; devoted to R&D on next generation of nuclear systems.

ITER: 7 members; project to develop fusion as a commercial energy source.

Methane to Markets: 17 members; recovery and use of methane from landfills, mines, oil & gas systems, and agriculture.

Asia-Pacific Partnership on Clean Development & Climate: 6 members; focuses on accelerating deployment of technologies to address energy security, air pollution, and climate change.

Conclusions

- A Coherent Priority-Setting System Has Multiple Steps
- Guided by L.T. Policy Goals & Creative Visioning
- Scenarios Analysis is One Tool for:
 - Informing Options, Scale, Timing, & Costs
 - Motivating Investment in R&D
 - Providing Feedbacks to Technology Goal-Setting
- Must Be Complemented by:
 - Portfolio Analysis, with Expert Input (S, W, G, and O)
 - Portfolio Development Principles & Investment Criteria
- High-Level Oversight
- Independent R&D Evaluations & Feedback
- Policies Promoting Int'l Cooperation & Deployment