Energy Technology Vision 2100 Insights from strategic technology roadmap and back casting approach

IEA Workshop on: Using long term scenarios for R&D priority setting

February 15-16, 2007 International Energy Agency, Paris

Makoto Akai m.akai@aist.go.jp National Institute of Advanced Industrial Science and Technology (AIST)

Background

- METI released the "Strategic Technology Roadmap" as a navigating tool for strategic planning and implementation of R&D investment (March 2005).
 - Covering 20 areas including:
 - information and communication technology, life science, environment and manufacturing
 - Structure:
 - Scenario for Introduction
 - Technology Overview
 - Roadmap

 Energy Technology Vision 2100 developed by ANRE/METI was integrated into this STR.

Development of "Energy Technology Vision 2100" Purpose

- To establish METI strategic energy R&D plan
 - To consider optimum R&D resource allocation.
 - To prioritize energy R&D programs and specific project of METI.
- To prepare strategy for post-Kyoto and further deep reduction of GHG
- To develop technology roadmap to be reflected in METI's energy, environmental and industrial policy

Energy Technology Vision 2100 Agency for Natural Resources and Energy Ministry of Economy, Trade and Industry

- An approach to LCS from Energy Policy
- Purpose
 - To establish strategic energy R&D plan by
 - identifying technologies and developing technology portfolio to prepare for resource and environmental constraints
 - considering optimum R&D resource allocation in METI
- Timeframe:
 - Vision and Technology roadmap: 2100

Overview of Energy Related Policy & Measures

5

Scope of Work

Timeframe

- Vision: 2100
- Technology roadmap: -2100
 - Benchmarking years: 2030 and 2050

Approach

- To introduce backcasting methodology
- To compile experts' view
- To confirm long-term goal using both topdown and bottom-up scenario analysis

Premises

- Resource and environmental constraints do not degrade utility but enrich the human race (improve utility)
- To develop the technology portfolio for the future in order to realize it through development and use of the technologies.
- Not to set preference to specific technology such as hydrogen, distributed system, biomass, etc.

Assumptions

Developing a Challenging Technology Portfolio

- The effect of modal shift or changing of lifestyle were not expected.
- Although the assumption of the future resource and environmental constraints includes high uncertainties, rigorous constraints were assumed as "preparations".
- To set excessive conditions about energy structure to identify the most severe technological specifications.
 - As a result, if all of them are achieved, the constraints are excessively achieved.

Definition of Desirable Futures

- Society where the economy grows and the quality of life improves
- Society where necessary energy can be quantitatively and stably secured
- Society where the global environment is maintained
- Society where technological innovation and utilization of advanced technology are promoted through international cooperation
- Society with flexible choices depend on national and regional characteristics

Assumptions towards 2100

Resource Constraints

Although assumption of the future resource

constraints includes high de uncertainties, the following constraints were assumed a

- Oil production peak at 2050
- Gas production peak at 2100

Forecast of world population

Forecast of world GDP

Environmental Constraints

- CO₂ emission intensity (CO₂/GDP) should be improved to stabilize atmospheric CO₂ concentration
 - 1/3 in 2050
 - Less than 1/10 in 2100 (further improvement after 2100)

M. Akai: AIST

Forecast of energy consumption

To Overcome Constraints ----

Sector specific consideration

- Residential/Commercial
- Transport
- Industry
- Transformation (Elec. & H₂ production)
- Definition of goal in terms of sector or subsector specific CO_2 emission intensity.

Identification of necessary technologies and their targets

Demand sectors and the	their typical	CO ₂ emission	intensity
------------------------	---------------	--------------------------	-----------

- Industry **Commercial**
- Residential

Transport

(*Transformation sector*: t-C/MJ)

- : t-C/production volume = $t-C/MJ \times MJ$ /production volume
- : t-C/floor space
- : t-C/household
- : t-C/distance

- = t-C/MJ \times MJ/floor space
- = t-C/MJ \times MJ/household
- = t-C/MJ \times MJ/distance

Conversion efficiency

Single unit and equipment efficiency

Three Extreme Cases and Possible Pathway to Achieve the Goal

Cases A & C assume least dependency on energy saving

M. Akai; AIST 13

Sketch of Technology Spec. 2100 Extreme Case-A (Fossil + CCS)

- Case A assumes a situation where we cannot heavily rely on energy saving.
- The increase of the share of electricity and hydrogen is considered.

* Values are relative to those in 2000, otherwise stated

Sketch of Technology Spec. 2100 Extreme Case-B (Nuclear)

- Case B assumes a situation where we cannot heavily rely on energy saving. * Values are relative - The increase of the share of electricity and hydrogen is considered. to those in 2000. otherwise stated [Target in the Industry Sector] [Target in the Transformation Sector] (1) Production of Electricity Electricity and Hydrogen (1) All the energy demand is supplied with electricity or Hydrogen About eight times* the current hydrogen with the exception of feedstocks and total amount of electricity generated reductants Nuclear Power [Target in the Transport and Res/Com Sectors] Supplying by nuclear power (1)100% of the energy demand is supplied by electricity or hydrogen Transport Res/Com Res/Com (Residentila) (Commercial)

Sketch of Technology Spec. 2100 Extreme Case-C (Renewable + Ultimate Energy Saving)

* Values are relative to those in 2000, otherwise stated ** Per unit utilitv [Target in the Transformation Sector] [Target in the Industry Sector] (1) Production of Electricity Energy demand** to be reduced by 70% and Hydrogen (1) 50% of the production energy intensity is About twice* of the current total reduced. electricity generated **Electricity**. (2) Making the rate of material energy Hydrogen regeneration to 80% (3) Improvement of functions such as strength by **Biomass** factor 4 **Renewable Energies** Supplying by renewable energies [Target in the Transport Sector] [Target in the Res/Com Sector] (1) Energy demand to be reduced by 80% (1) 70% of the energy demand** is through energy saving and energy creation. reduced through energy saving and fuel switching. For automobile, 80% is reduced Res/Com Res/Com Transport (Residential) (Commercial)

M. Akai; AIST

16

Development of Technology Roadmaps

- Target sectors:
 - Residential and Commercial
 - Transportation
 - Industry
 - Transformation (Energy supply)
- Summary roadmap
 - Target specifications and milestones
 - Typical technologies
- Detailed roadmaps
 - Technology breakdown for sub-sectors

Important Cross-Boundary Technologies

- Once a cross-boundary technology is established, it can work effectively in a wide range of applications. Here, the following technologies are identified:
 - Energy-saving technologies
 - Energy storage technologies
 - Power electronics technologies
 - Gasification technologies
 - Energy management technologies

Verification by Scenario Analysis using GRAPE Model

M. Akai; AIST

Scenario Study on the Vision

Energy Scenario of Japan based on Energy Technology Vision 2100

 Case Study by an Energy Model "ATOM-J" developed by Akai.

ATOM-J Model

- Optimized LP
- Term: 1990-2100
- 18 world regions
- Demand Sectors
 - Industry
 - Household
 - Service
 - Transport

M. Akai: AIST

M. Akai; AIST

22

CO_2 Emission in Japan \approx Mix (w. CCS, Cumulative CCS potential: 10Gt-CO₂)

M. Akai<u>; AIST</u>

23

Implications on Specific Technology Areas

Hydrogen

 Important as an energy storage medium, especially when energy supply dominated by renewable resources.

Biomass

- Contribution to transformation sector (power generation and hydrogen production) is relatively small.
- Mainly used in industrial sector as a carbon free resource containing carbon.
- CO₂ Capture and Sequestration (CCS)
 - Important as a short or mid-term option (fossil power plants, industries, hydrogen production) by increasing the flexibility of energy supply and demand structure with moderate cost.

Possible ETV 2100 Scenario - Combination of 3 Cases -

- One of the reasonable solutions for sustainable society is a combination of the case A (in short or middle term, reduce atmospheric CO₂ by CCS), C (in long-term, utilize renewables to the maximum beside ultimate energy-saving) and B (stable operation of nuclear power plants).
- However, appropriate combination of each case may change according to the future situation, so it is important to judge R&D priority based on the future social and economical situation or status of technology progress.

Next Steps

- Periodic update of the "Vision"
- Development of tecnology roadmaps for 2030 reflecting "*New National Energy Strategy* (May, 2006)" as a part of STR2007
 - Reinforcement by addition of short- and mid-term view through forecasting

M. Akai: AIST

- Technology area includes:
 - Energy efficiency
 - Renewables
 - Nuclear
 - Fossil Fuels
 - Transportation, etc.

Expectations towards ETP2008 - Implication from the work on ETV2100 -

- Importance of sector specific (or technology specific, if possible) approach
 - Linkage with "indicators" under development and addition of indicators on important areas
- Large potential of energy saving or CO₂ reduction through transfer of BATs
 - Significant potential lies in power generation sector
- Breakdown of scenarios to nation or region specific trends would be useful for policy making

Thank you!

English version of ETV 2100 is available at: http://www.iae.or.jp/2100.html

