



# Thermal Storage: Residential and Commercial Buildings

IEA Committee on Energy Research and Technology Strategic and Cross-Cutting Workshop Energy Storage Issues and Opportunities

> Prof. Dr. Luisa F. Cabeza Dr. Albert Castell





- Introduction
  - Human comfort requirements
  - Demand for heating and cooling
- Heating and cooling of buildings
  - Applications for space heating
  - Applications for space cooling
  - Applications for domestic hot water
- Conclusions



- Introduction
  - Human comfort requirements
  - Demand for heating and cooling
- Heating and cooling of buildings
  - Applications for space heating
  - Applications for space cooling
  - Applications for domestic hot water
- Conclusions



- Temperature
  - air temperature: 22°C to 26°C
  - thermal radiation (surface temperatures):
  - changes < 5°C vertically, < 10°C horizontally</li>
- Relative humidity
  - 30% 70% ok, 50% best
- Air velocity
  - velocity < 9m/min in winter, <15m/min in summer,</li>
  - minimum air movement for moisture removal!





- Space heating and cooling
  - With air as heat transfer medium
  - With water as heat transfer medium
- Domestic hot water
  - Drinking water regulations
  - High power requirement, 1 L/min with heating from 20 °C to 40 °C means 1.25 kW of heating power!
  - Competition to hot water storage with direct discharge
  - $\Rightarrow$  very difficult!



# Demand for heating and cooling





- Introduction
  - Human comfort requirements
  - Demand for heating and cooling
- Heating and cooling of buildings
  - Applications for space heating
  - Applications for space cooling
  - Applications for domestic hot water
- Conclusions



- General consideration for systems with heating from a warm surface
  - Heating power q=A· $\alpha$ · $\Delta$ T
  - Temperature difference  $\Delta T$ 
    - can be increased, but at the expense of reduced efficiency in many cases
    - $\Delta T = 10$  to 20 °C for low temperature heating over large surfaces
    - $\Delta T = 20$  to 40 °C for regular heating systems with heating units
  - Heat transfer coefficient  $\alpha$ 
    - Wall heating  $\alpha$  = 3 to 6 W/m<sup>2</sup>K
    - Floor heating  $\alpha$  = 6 to 10 W/m<sup>2</sup>K
    - No heating from ceiling
  - The encapsulation is also need as heat exchanger in hot water systems!



• Façade elements for heating, cooling and illumination





# Applications for space heating





• Daylighting element with PCM



more comfortable indoor temperatures



# Applications for space heating

• Floor heating systems

Rubitherm:

- High storage capacity (0,5 kWh/m<sup>2</sup>)
- Energy consumption reduced up to 35% compared with conventional heating systems
- No time necessary for drying after installation





Sumika Plastech (Japan) Electrical floor heating system with PCM



- General consideration for systems with heating by supplying hot air
  - Heating power  $q=\rho \cdot cp \cdot \Delta T \cdot \Delta V / \Delta t$
  - $\Delta T$  can be easily, but at the expense of reduced efficiency in many cases
  - Heat capacity of air  $\rho$ -cp  $\cong$  1 J/LK (water has approx. 4kJ/LK)
  - Volume flow  $\Delta V/\Delta t$  creates noise and can lead to uncomforted feeling if the air moves too fast
  - Compared to systems with hot water:
    - Leakage is no problem
    - The necessary encapsulation of the PCM is no disadvantage in this case as systems with hot water also need a heat exchanger!



- PCM to buffer temperature variations in solar-air-systems
  - Solar-air systems are well suited for heating the fresh air circulated into buildings in an energy-efficient manner



- Problem: Temporal difference between heat demand and solar heat availability
- Possible solution: Heat storage with PCM



- PCM was tested in four different solar-air system prototypes collector absorber
  - ventilation pipes (double pipe with PCM in the partition)
  - hypocaust (hot-air floor heating with a PCM layer as heat storage)
  - storage block (hot-air storage connected to the collector)  $\Rightarrow$  appears to be the most promising application
- A prototype has been in operation at Grammar
  - charged via 20 m<sup>2</sup> collector
  - air flow 180 300 m<sup>3</sup>/h
  - approx. 4.1 kWh latent heat storage capacity





- Storage for heating with hot water
  - for regular heating systems with heating units T = 40 to 60 °C
  - NaOAc·3H<sub>2</sub>O-graphite-compound for high density storage with good heat transfer
  - currently more than 1300 cycles tested, no performance loss observed

Bosch, SGL, Behr, Merck, ZAE (LP-PCM)





- Takasaki City hall (Japan)
  - A new city hall had been completed in February 1998
  - The building was equipped with heating apparatuses using PCM, which was called Thermal Storage Counter (TSC)
    - One TSC unit had 396 capsules containing PCM whose melting temperature was 55 °C
    - The capsules were heated up during night using discounted nighttime electric tariff
    - The stored heat was discharged during daytime by both convection and radiation





- Narita airport (Japan)
  - Micro encapsulated PCM was used for thermal energy storage system in Narita international airport
  - The refrigerants in heating and cooling plant should be changed from CFC 11 to HCFC 123 due to abandon of HFC
  - The encapsulated PCM was adopted to compensate deterioration of cooling capacity by replacing refrigerants





# Applications for space cooling

- The Problem
  - Stone walls
    - Good heat storage
    - Buffer temperature changes
    - Storage of night cold by ventilation at night



- Flexibility and visual effects
- Little heat storage
- Very bad indoor climate!







30

Selection of the PCM

air [°C] too warm Cold 25 cold storage ok heat transfer medium heat transfer medium supply demand medium emperature 15 10 15 20 25 30 10 temperature of the surrounding surfaces [°C]

- The lower the temperature of the melting point of the storage
  - $\Rightarrow$  the higher the cooling power
  - $\Rightarrow$  the more difficulties arise searching a suitable cold source
    - "natural" sources
      - Cold night air, in Germany usually below 22 °C
      - Evaporative cooling, depends on humidity, maybe down to 12 °C
      - Ground water, maybe down to 10°C
    - "artificial" sources, chillers go down to below 0 °C



- Strategies for natural cold sources:
  - Availability of cold source?
  - Cold source temperature?
  - Investment cost?





- Examples using natural cold sources can be divided into
  - Passive systems:

building materials or building components

increase of thermal mass of the building

– Active systems:

intermediate storage to use cold from the night or other cheap cold sources and actively moving the heat transfer medium



- Shading-PCM compound system
  - External blinds are susceptible to strong winds
  - Internal blinds release absorbed solar heat

into the room!

 $\Rightarrow$ Idea: reduce and delay temperature rise

through PCM in the blind



Warema, ZAE (LP-PCM)



• Experimental results from a horizontal blind

horizontal blinds with PCM







- Sun shading system with PCM developed and tested in laboratory scale
  - experimental and simulation results were very promising:
  - significant decrease in max. blind temperature by  $\approx 10 15^{\circ}$ C
  - significant decrease in operative temperature of the room by  $\approx$  3°C
  - time shift heat gains from noon to evening

 $\Rightarrow$  improved thermal comfort during working hours

- New demonstration project for PCM-systems will start mid 2005:
  - development of Sunshading system with PCM to prototype stage
  - test of system performance in various demonstration buildings under realistic conditions



- Microencapsulated PCM in building materials
  - Strategy:



Peak shaving: temperature peaks during summer can be reduced by the use of PCM



# Applications for space cooling

Gypsum plaster boards with micro-encapsulated paraffin

Knauf, ZAE (LP-PCM) 35 wt.-% micro-encapsulated paraffin integrated into plaster board during conventional production process;



handling as without PCM

Technical data: enthalpy:  $\Delta H = 366 \text{ kJ/m}^2$ , = 35 J/g cp= 1.2 J/(gK),



B2 (classified in DIN 4102 part 1)





- Plaster with micro-encapsulated paraffin
  - Maxit, FhG-ISE
    - 2000 "3-liter house" LUWOGE Ludwigshafen
    - 2001 test room at IBP Holzkirchen
    - 2002 office in the new ISE building
    - 2002 2003 1st commercial building in Offenburg
    - 2003 test room in the façade test stand at the ISE
    - 2003 administrative building maxit in Breisach



# Applications for space cooling

- Concrete
  - Concrete: No insulation
  - Concrete + Micronal: 5% in weight of microencapsulated PCM





| Micronal                      |     |
|-------------------------------|-----|
| Melting point (°C)            | 26  |
| Heat Storage Capacity (kJ/kg) | 110 |

|                        | Micronal                        |      |
|------------------------|---------------------------------|------|
| Mass of PCM per        | wall (kg)                       | 83   |
|                        | floor area (kg/m <sup>2</sup> ) | 43.2 |
| Percentage referred to | structural material (%)         | 5    |
|                        | wall (%)                        | 5    |



- Conventional brick:
  - **Reference:** No insulation
  - Polyurethane: 5 cm of PU
  - RT27+PU: CSM panels (RT-27) and
    5 cm of polyurethane

#### Paraffin RT-27

| Melting point (°C)            | 28  |
|-------------------------------|-----|
| Congealing point (°C)         | 26  |
| Heat Storage Capacity (kJ/kg) | 179 |
| Heat conductivity (W/m·K)     | 0.2 |

Reference



| Hydrated salt SP-25 A8        |     |  |
|-------------------------------|-----|--|
| Melting point (°C)            | 26  |  |
| Congealing point (°C)         | 25  |  |
| Heat Storage Capacity (kJ/kg) | 180 |  |
| Heat conductivity (W/m·K)     | 0.6 |  |

# RT27+PU

- Alveolar brick:
  - Alveolar: No insulation
  - SP25+Alveolar: CSM panels (SP-25 A8) inside the cubicle







#### Applications for space cooling

26



Summer period – 04/08/08 to 07/08/08 **CONVENTIONAL BRICK** 







- PCM-plaster with capillary sheets connected to ground water
  - Increased thermal storage capacity
  - Use of "more reliable" cold sources like groundwater (natural) or cold production
  - Energy used to move heat transfer medium=fluid and maybe for cold production

Berlin, Gotzkowskystraße 1.100 m<sup>2</sup> plaster on capillary sheets installed

Maxit





• Free cooling systems in the ceiling



Observations:

- Reduction of 3-4°C in internal temperatures
- Installed at a fraction reduced cost alternative
- Energy consumption is low (cooling / fan energy) ~20



- Free cooling systems in the wall
  - Example:





- Strategies for artificial cold sources:
  - Ice or other PCM  $\rightarrow$  Chiller efficiency
  - Compression-, Ammonia-, LiBr-Chiller  $\rightarrow$  investment cost





- Development of Supply Air Conditioning System Utilized Granulated Phase Change Materials (Japan)
  - In this system, latent heat is stored in PCM that is embedded directly below OA floor boards in the form of granules with several millimeters in diameter
  - The feature of the system is that heat exchange occurs through direct contact between the granular PCM and air serving as the heat medium





- Clathrate Hydrate Slurry (Japan)
  - A new material was developed, Tetra n-butyle ammonium salt, which composed hydrate at atmospheric pressure and had latent heat in 5 to 12 °C
  - The slurry was fluid and could be pumped as heat transfer medium
  - The material was expected to reduce pumping power consumption, which was relatively large in HVAC system
  - The performance of system was demonstrated in a real scale experimental facility, which had area of 1,700 m<sup>2</sup> for air conditioning





- Phase change material slurries and their commercial applications (Germany)
  - Slurries have similar general fluid properties and they offer the advantage of high latent heat storage capacity at a narrow temperature band corresponding to the phase change temperature
  - They require smaller storage capacity and reduce pumping costs
  - Simulations show the potential in saving energy for pumping the heat transfer fluid
    - A well dimensioned application could save up to 50% of electricity that is necessary for conveying the same amount of heat of a water system





- PCM in stratified water tanks (Spain)
  - The idea was to include a PCM module at the top of the water tank to increase its energy density and to improve its performance
  - Various PCMs with melting temperatures around 55°C were tested (RT54, fatty acids, and sodium acetate)
  - Experiments showed that the addition of only about 6% of volume of PCM increase the density energy of the tank by about 40%, and that water was kept at usage temperature a longer period of time





# Applications for domestic hot water

- PCM in stratified water tanks (Spain) Description of the installation. Storage tanks
  - 2 storage water tanks of 287 L
  - 1685 mm high and 620 mm of diameter
    - Internal coil heat exchanger for the solar loop
    - One tank with an upper coil heat exchanger

| Upper coil heat<br>exchanger |        | Lower coil heat exchanger |         |  |
|------------------------------|--------|---------------------------|---------|--|
| Heat exchanger<br>surface    | Volume | Heat exchanger<br>surface | Volume  |  |
| 1.1 m <sup>2</sup>           | 9.62 L | 1.4 m <sup>2</sup>        | 12.24 L |  |

| А    | В    | С   | D   | F   | G   | Н   |
|------|------|-----|-----|-----|-----|-----|
| 1685 | Ø685 | 345 | 355 | 130 | 400 | 760 |





- PCM in stratified water tanks (Spain)
  Description of the installation. PCM configuration
  - PCM used: composite PCM-graphite
  - 2 different PCM configurations tested:
    - 9.21 kg of PCM in 8 aluminium modules
    - PCM located in the upper coil heat exchanger and 3 aluminium modules
      - − Total amount of 8.05 kg → experimental density of PCM in the coil of 0.5 kg/L







# Contents

- Introduction
  - Human comfort requirements
  - Demand for heating and cooling
- Heating and cooling of buildings
  - Applications for space heating
  - Applications for space cooling
  - Applications for domestic hot water
- Conclusions



- Many different systems have been tested for PCM application in buildings to reduce energy consumption
  - PCM in building envelopes presents a huge potential
  - Under floor heating systems with PCM present good results
  - Heating systems using both air and water have been tested
  - Domestic hot water systems to increase thermal storage capacity



- <u>Incorporating PCM in building envelopes</u>
  - Temperature peaks can be reduced
  - Energy savings can be achieved
- Incorporating PCM in under floor heating systems
  - Energy savings can be achieved
- Incorporating PCM in active free cooling systems
  - Temperature peaks can be reduced
- Incorporating PCM in domestic hot water systems
  - The energy storage capacity can be increased