

IEA Buildings Webinar Series

Webinar 4 - Modeling and Data Peer Review

Marc LaFrance, John Dulac and Siyue Guo, IEA Paris, 23 June 2014

2013 BUILDING PUBLICATIONS

Technology Roadmap

Energy efficient building envelopes

Dec 2013

Aug 2013

Jun 2013

Importance of Buildings Sector

- Largest end-use sector
- 1/3 carbon emissions
- 50% of electricity
- Major portion of GDP

- Opportunities/challenges:
 - 75% 90% of OECD building stock still in service by 2050
 - Large population growth in developing world will drive new floor area that needs to be efficient (2.5 billion more by 2050)

IEA/SPT Flagship Publication, Energy Technology Perspectives 2014

www.iea.org

Source: Energy Technology Perspectives 2014

- 6°C Scenario business-as-usual; no adoption of new energy and climate policies
- 2°C Scenario energy-related CO₂-emissions halved by 2050 through CO₂-price and strong policies

ETP 2014 Building Energy

Savings Forecasting

www.iea.org

6 degree scenario (business as usual)

2 degree scenario (assertive policies)

ETP Model Structure

Buildings Model

iea 1974-2014 31 Country/Regional Forecasts

Countries							
Brazil	Germany	Mexico					
Canada	Iceland	Norway					
Chile	India	Russia					
China	Israel	South Africa					
Denmark	Italy	Sweden					
Finland	Japan	United Kingdom					
France	Korea	United States					

Regions
ASEAN
Other Africa
Other developing Asia
Other Latin America
Other non-OECD Europe and Eurasia member non-
member of the EU
Other non-OECD Europe and Eurasia member of the EU
Other OECD Asia Oceania
Other OECD Europe member of the EU
Other OECD Europe non-member of the EU
Middle East

Excel Based Model – Potential to Migrate to New Platform

Residential Module

- Floor area and households
- Space heating
- Water heating
- Lighting
- Cooking
- Space cooling
- Appliances
 - Refrigerators & freezers
 - Washers & dryers
 - Televisions
 - Miscellaneous electricity

Services Module (commercial)

- Floor area
- Space heating
- Water heating
- Lighting
- Space cooling
- Other

- We derive floor area forecasts to 2050 based on existing floor area data, GDP and population forecasts
- We derive household occupancy forecasts to 2050 based on existing data, GDP and population forecasts – then the number of households are determined with population forecasts

Floor Area Correlation to GDP and Population

China Floor Area and Household **Forecast Example**

- Floor area forecasts using gompertz curve function, need to collaborate with other forecasts
- Considering the possible impact of floor area regulations as a policy being considered by China (preliminary analysis, sample forecasts)

Household Occupancy Example

www.iea.org

- Need to collaborate with other organisations and compare forecasts for full set of countries and regions
- Example for China

2015

2020

2025

2005

Possible scenarios/sensitivity analysis

Year

Technology/Fuel Share Saturation Data and Assumptions Example

- IEA seeking updated and improved data
- Recent success with LEDs would suggest more assertive assumptions for saturation
- How likely will halogens be banned in coming years?

Residential Lighting		2011	2030 6DS 4DS 2DS			2050 6DS 4DS 2DS		
Incandescent	most countries	70%-85%	30%-35%	25%-30%	20%-25%	25%	20%	0%
Fluorescent	most countries	7%-10%	10%-15%	15%	15%	15%	15%	15%
CFL	most countries	11%-18%	30%	35%	40%	35%	40%	50%
LED	most countries	0%	1%	1%	5%	5%	5%	15%
Halogen	most countries	1%	20%	20%	20%	20%	20%	20%
Oil lamp	India (only)	35%	35%	30%	30%	30%	25%	20%

Efficiency Assumptions

Example

- Efficiency is indexed to incandescent then assumed to increase from the base
- We want realistic assumptions for efficiency not just technical measures since certain numbers of the population will increase lumens with advanced lighting (current LED probably quite low)

Residential Lighting		2011	2030			2050		
			6DS	4DS	2DS	6DS	4DS	2DS
Incandescent	most countries	100%	100%	100%	100%	100%	100%	100%
Fluorescent	most countries	400%	400%	400%	500%	400%	400%	500%
CFL	most countries	300%	350%	350%	400%	350%	350%	450%
LED	most countries	215%	400%	500%	500%	550%	550%	550%
Halogen	most countries	130%	130%	130%	130%	130%	130%	130%
Oil lamp	India (only)	15%	17%	17%	17%	17%	17%	17%

Energy Demand

- Energy intensity used as a proxy for demand, derived for current year then forecasted with assumptions for increasing or decreasing
- Actual future intensity is calculated with saturation, efficiency and proxy demand intensity

Lighting	2011		2030		2050		
kWh/m²/year		6DS	4DS	2DS	6DS	4DS	2DS
most countries	4.0-9.0	4.2-9.2	4.0-9.0	3.8-8.9	4.3-9.3	4.1-9.0	3.9-8.7
South Africa	23.6	24.8	24.8	23.9	26.1	26.1	23.9
China	1.8	3.1	3.1	2.5	5.6	5.6	3.3
Sweden	14.6	14.9	14.6	13.6	15.2	14.6	12.3
US	13.1	13.0	12.8	12.4	13.0	12.6	11.7

Heating and Cooling Energy Consumption

- IEA is using energy intensity by building vintage but there is insufficient data for most countries to allow for high quality analysis
- Many organisations conduct detailed building simulation that derives energy savings forecasts by building component, however they are highly dependent upon existing building characteristics
- IEA is in the process of updating our thermal forecast methodology and seeks inputs on data sources and approaches that builds upon existing sources through collaborations

IEA Looking to Work Closely with Variety of Partners

Peer Review & Collaboration

- Peer review and feedback from all stakeholders and partners
- Establish long-term partnerships to collaborate in detail on all facets of modeling
- Long-term strategy to conduct more detailed policy related forecasting with full range of sensitivity analysis
- Consider a new project to pursue much more in-depth building equipment and materials data to improve model quality and policy assessment

Next Steps

- Webinar participants and stakeholders provide modeling approach and data feedback by July 11th (review data file)
- Express commitments to work with the IEA, possible secondment at the IEA
- Consider and express interest in more indepth data effort, in-kind and potential financial support
- Express interest in the IEA hosting an October/November 2014 workshop along with potential support

Contact Data

www.iea.org

International Energy Agency

9, rue de la Federation757 Paris Cedex 15, France

P Marc LaFrance, CEM

Energy Analyst Buildings Sector, Sustainable Energy Policy and Technology Directorate marc.lafrance@iea.org, +33 (0)1 40 57 67 38

John.dulac@iea.org, Siyue.guo@iea.org

Buildings Webinar Series (May/June 2014) — www.iea.org/workshops

Download Envelope Roadmap - free

http://www.iea.org/publications/freepublications/publication/name,45205,en.html

Download Building Code Policy Pathway – free

http://www.iea.org/publications/freepublications/publication/PP7 Building Codes 2013 WEB.pdf

IEA Bookstore – Buildings Book – discounts to non-profits, partners, and bulk orders

http://www.iea.org/W/bookshop/add.aspx?id=457