

Data and Analysis Supporting Equipment Energy Efficiency Initiatives

Michael McNeil, Ph.D. Lawrence Berkeley National Laboratory

SUPEREFFICIENT.ORG | CLEANENERGY MINISTERIAL.ORG

Presentation Objectives

- Lay out how detailed and robust data and analysis strengthen initiatives seeking to accelerate progress on equipment efficiency.
- Outline key elements of data/analysis, report on progress to date and indicate prospects for improvement/expansion.
- Provide an example from SEAD where data and analysis has been used to articulate progress and gaps on a global scale.

SEAD is a multinational government collaboration whose primary objective is to accelerate global market transformation for energy efficient products

SUPEREFFICIENT.ORG | CLEANENERGY MINISTERIAL.ORG

Data and analysis of policies and technologies is critical to provide global leadership on efficiency policy and technology assessment

Element 1 - A database of efficiency policies facilitates best practices and replication

- What are end uses most commonly included?
- What are emerging trends in end uses covered?
- Where are gaps?

Source: EES/Maia for Australia Dol

Name	Scope	Needs
EES/Maia Global S&L Report	Global Equipment EE	Keep up to date
CLASP S&L Database	Global Equipment EE	Incorporate recent data
SEAD Activity Schedule	SEAD Countries	Add China, update above
IEA PAM Database	EE+RE Policies	Incorporate S&L details

SUPEREFFICIENT.ORG | CLEANENERGY MINISTERIAL.ORG

Element 2 – Stringency and Impacts Analysis helps prioritize and track progress

Estimated future I savings from MEPS in SEAD Countries 2010-2013

	2020 CO ₂ (MT)			2030 CO ₂ (MT)				
Fuel, Sector	OECD	non-OECD	Total	OECD	non-OECD	Total		
Electricity								
Residential	66	35	101	123	112	235		
Commercial	29	0	29	55	0	55		
Industrial	23	5	27	51	10	61		
Total	118	40	157	229	122	351		
Fuel								
Residential	15	0	15	29	0	29		
Commercial	0	0	0	1	0	1		
Total	15	0	15	30	0	30		
Grand Total	132	40	172	259	122	381		

Impacts analysis starts with a list of recent policies, but requires technical specifications (stringency) of standards and estimates of efficiency baselines, product sales and use patterns.

Source: SEAD/LBNL

- To date, SEAD has analyzed nearly 200 separate regulations in 13 SEAD economies, likely covering the majority of energy savings from MEPS worldwide since 2010.
- Gaps include labeling programs, and programs in non-SEAD countries, notably China.
- Cross-check with national program estimates would solidify results.

Reducing energy demand from equipment matters for climate change

IEA World Energy Outlook – "4 for 2" Report:

Energy efficiency accounts for 49% of 3.1 Gt CO_2 -eq estimated by 2020 in order to maintain 2C. Of this, 1.4 Gt are in *industrial motors and buildings*.

Source: IEA

SEAD – BUENAS: SEAD research (BUENAS) identifies equipment efficiency policies which, if implemented in SEAD economies + China could reach half of this goal and lock in even more future savings.

Source: SEAD/LBNL

Element 3 – Market Tracking Enables Benchmarking, Lowers Capacity Barriers and Promotes Policy Innovation

Progress: Efforts such as IEA 4E M&B have gathered data from participating countries and performed detailed analysis comparing average efficiency of markets

Refrigerator Energy Consumption by Country

Source: IEA 4E Mapping and Benchmarking Annex

Challenges

- Evaluating pre-program baselines
- Obtaining sales weighted efficiency
- Test procedure differences
- Price data availability

Opportunities

- Test procedure conversion algorithms
- Pooling resources to purchase marketresearch datasets
- Internet-based data ("web-scraping")

Conclusions and Recommendations

 Data and Analysis provide value to international initiatives in two directions:

<u>Inward</u> – Set priorities and focus for resource allocation.

<u>Outward</u> – Demonstrate value to national governments and lower information barriers (especially for developing country governments).

- Recent work by various parties have established valuable elements of a global resource, but these elements need to be made comprehensive and kept up to date.
- Individual countries/economies as well as multiple international initiatives have common needs for Data and Analysis – should pursue economies of scale and reduce redundancy by coordinating efforts.

Thank You!

Michael McNeil, Ph.D. Lawrence Berkeley National Laboratory

mamcneil@lbl.gov les.lbl.gov