

Anselm Eisentraut Bioenergy Analyst

Moscow, 04.06.2012

Technology Roadmap

Bioenergy for Heat and Power

2°C Scenario – towards a low-carbon energy sector

- **6°C Scenario** business-as-usual; no adoption of new energy and climate policies
- 2°C Scenario energy-related CO₂-emissions halved by 2050 through CO₂-price and strong support policies

Overview on Bioenergy Technologies

	Basic and	applied R&D	Demonstration Early commercial				Commercial			
Biomass pret	reatment	Hydrothermal treatment		Torref	action	Pyrolysis			Pelletisation/ briquetting	
Anaerobic digestion	Microb	al fuel cells					2-st dige Bio upgra	age stion gas ading	1-stage digestion Landfill gas Sewage gas	
Biomass for heating						Small scale gasification		Con	nbustion in boilers and stoves	
Biomass for power generation										
Combustion			Stirling engine			Combustion with ORC		C	Combustion and steam cycle	
Co-firing		Ind	irect co-firing	Para	llel co-fir	ring		Direct co-firing		
Gasification		Gasification wi	th FC	BICGT BIGCC		Gasification with engine	Gas s	ificatioı team cy	n with /cle	

Note: ORC = Organic Rankine Cycle; FC = fuel cell; BICGT = biomass internal combustion gas turbine; BIGCC = biomass internal gasification combined cycle

Source: Modified from Bauen et al., 2009

- A large number of conversion routes for heat and/or power exist
- More RD&D is needed to get promising pre-commercial technologies to the market to prove they can meet cost and GHG targets

Bioenergy consumption in buildings declines

- Traditional biomass use is replaced with more efficient cookstoves, and alternative fuels
- Buildings becoming more energy-efficient

Industry set to triple consumption of bioenergy

Bioenergy becoming increasingly important for production of <u>high temperature</u> heat

World bioenergy electricity supply to grow more then ten-fold

Biomass supply prospects - uncertainties remain

Biomass demand for heat and power reaches 5-7 billion tons in 2050

Intermediate targets should be adopted to enhance international biomass trade, and assess costs and sustainability impact

Bioenergy – a competitive heat source in many circumstances

Source: IEA analysis based on AEA (2011), DECC (2011), IPCC (2011), Mott MacDonald (2011), Uslu et al. (2012).

Bioenergy electricity generation costs are strongly scale-dependend

*Co-firing costs relate only to the investment in additional systems needed for handling the biomass fuels, with no contribution to the costs of the coal-fired plant itself. Fossil electricity generation costs are not capacity specific.

Source: IEA analysis based on DECC (2011), IPCC (2011), Mott MacDonald (2011), Uslu et al. (2012).

2 Gt CO_{2-eq} emission reductions through bioenergy heat and power

Note: This assumes that biomass is sourced sustainably with very low life-cycle GHG emissions.

- Compared to a business-as-usual (6°C) scenario bioenergy could provide substantial emission savings:
 - **1** Gt CO_2 -eq. through bioenergy electricity + 0.3 Gt CO_2 -eq. through bioenergy electricity equipped with CCS
 - A total of 0.7 Gt CO₂-eq. in industry and buildings

Technology milestones

20	12	2015	2020	2025	2030
1 st commercial- scale plant	 Torrefaction Pyrolysis Bio-SNG BIGCC 		 Commercial dep 	oloyment	
Efficiency & cost improvements	 Low-cost, advanced biomass cookstoves Create "off the Increase ave plants by 5% 	shelf" plan rage elect	Sustained dep through econo supply chains t design tricity generation e	oloyment omically viable efficiency of new	V

Key Policy Actions

Ambitious policy framework:

Create a long-term policy framework for bioenergy, taking into consideration specifics of electricity and heat markets

Sustainability:

- Implement internationally agreed sustainability criteria for bioenergy
- Set medium-term targets for sustainable biomass supply to help establish supply chains

International Collaboration:

- Engage in international collaboration on capacity building and technology transfer
- Introduce technical standards for biomass feedstocks to promote international trade
- Promote the alignment of biofuel and other related policies (agriculture, forestry, rural development)