
IEA Roadmap Workshop

"Sustainable Biomass Supply for Bioenergy and Biofuels" 15-16 September 2010

Adam Brown Anselm Eisentraut Renewable Energy Division

We need a global 50% CO₂ cut by 2050

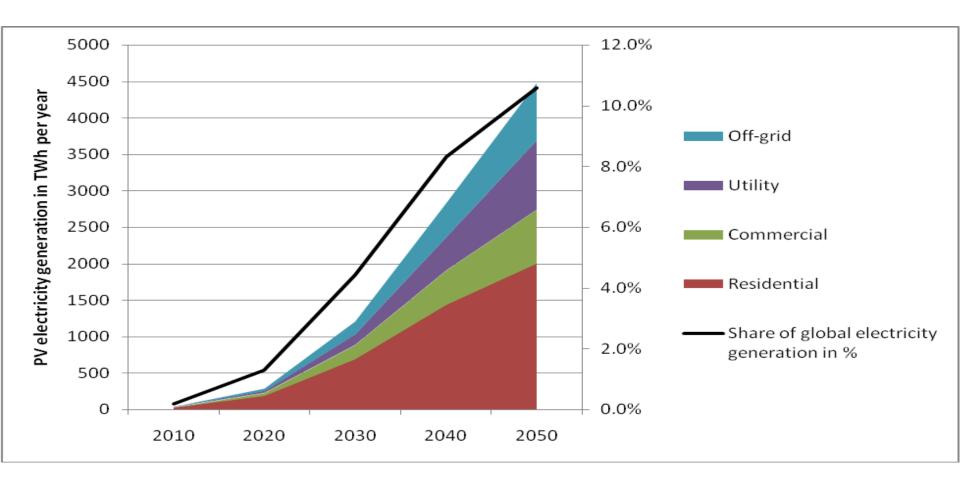
- We need a global 50% CO₂ cut by 2050
- A wide range of technologies will be necessary to reduce energy-related
 CO₂ emissions substantially

The role of roadmaps

- A global price for carbon is necessary
 - ...but by itself insufficient to accelerate the needed energy technology advancements in time
- Greater focus on energy technology policies needed
- Technology roadmaps can support GHG goals by:
 - Identifying and addressing technology-specific barriers
 - Highlighting necessary deployment policies and incentives
 - Directing increased RD&D funding for new technologies
 - Supporting technology diffusion, knowledge sharing among countries

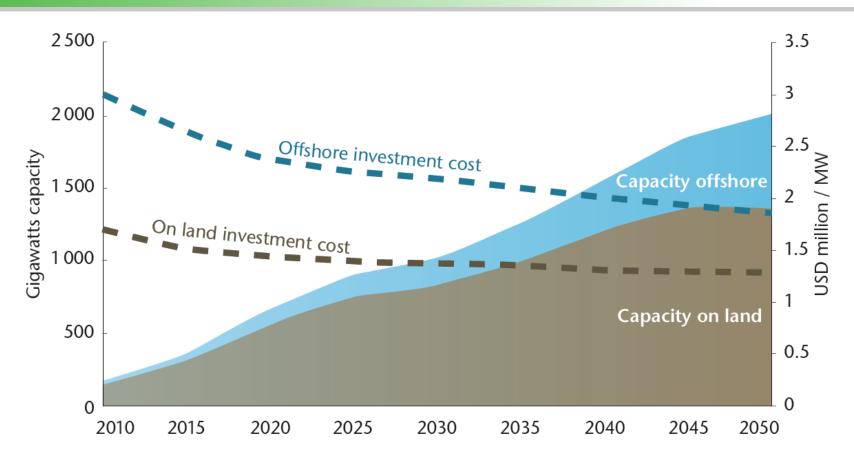
Technology roadmaps provide answers

- Where is technology today?
 - GW installed capacity/kWh of savings
 - Leading countries/regions
 - Cost, efficiency
- What is the deployment pathway needed to achieve 2050 goals?
 - Use IEA Energy Technology Perspectives BLUE Map scenarios
- What are the priority near-term actions?
 - Technology incentives
 - Technology-specific barrier identification and removal
 - RD&D funding
 - Technology diffusion/transfer


Roadmap status

- 2009 releases
 - Carbon capture & storage, Electric vehicles, Cement sector, Wind energy
- 2010 releases
 - Solar PV, Concentrating Solar Power May
 - Nuclear power July
 - Energy efficient buildings: heating and cooling –
 September
 - Smart grids, Vehicle efficiency December
- 2011 releases
 - Biofuels; Bioenergy for heat & power; Clean/highefficiency coal; Energy efficiency in buildings: design & operation; Geothermal power; Hydrogen & fuel cell vehicles

Roadmap example: Photo Voltaic - an ambitious growth pathway



PV provides 5% of global electricity generation in 2030, 11% in 2050

Wind roadmap example: cost and deployment targets

- Global wind energy capacity increases to more than 2000 GW in 2050
- Costs decrease to USD 1.3 million/MW (onshore) and USD 1.9 million/MW (offshore) in 2050

Solar PV roadmap example: technology performance milestones

Crystalline Silicon Technologies	2010 - 2015	2015 - 2020	2020 - 2030 / 2050
Efficiency targets in %	Single-crystalline: 21%Multi-crystalline: 16%	Single-crystalline: 23%Multi-crystalline: 18%	Single-crystalline: 27%Multi-crystalline: 21%
Industry manufacturing aspects	• Si consumption <5g/Wp	• Si consumption <3g/Wp	• Si consumption <2g/Wp
R&D aspects	 New silicon materials and processing Cell contacts, emitters and passivation 	Low defect silicon wafersImproved device structures	Wafer equivalent technologiesNew device structures with novel concepts
Thin Film Technologies	2010 - 2015	2015 - 2020	2020 - 2030
Efficiency targets in %	Thin film Si: 10%CIGS: 14%CdTe: 12%	Thin film Si: 12%CIGS: 15%CdTe: 15%	Thin film Si: 15%CIGS: 18%CdTe: 18%
Industry manufacturing aspects	High rate depositionRoll-to-roll manufacturingPackaging	Simplified production processesLow cost packaging	 Large high-efficiency production units
R&D aspects	 Large area deposition processes Improved substrates and transparent conductive oxides 	 Improved cell structures Improved deposition techniques 	Advances materials and concepts

EV/PHEV roadmap example: policy requirements

Vehicle-fuel price related

- Favourable financing terms e.g., battery leasing to minimise up-front and monthly cost.
- Feebate (vehicle fee/rebate) system at time of vehicle purchase, based on performance (e.g., life-cycle CO₂ emissions).
- Differential CO₂-based fuel taxes.
- Reductions in highway tolls and other vehicle fees (annual registrations).
- Incentives for providing recharging infrastructure in commercial/public areas.
- Subsidisation of the cost of recharging infrastructure for households/apartment buildings.

Not cost-related

- Differential treatment for EVs/PHEVs in terms of regulations, such as access to otherwise vehiclerestricted zones in city centres, preferential parking spots with charge points.
- Guarantees for re-sale values, battery replacements.
- Additional credits under regulatory systems
 (e.g., in EU vehicle CO₂ regulations, EVs/PHEVs
 are considered zero emissions, so automakers
 get an advantage for producing them; similar
 credits exist in the US Corporate Average Fuel
 Economy (CAFE) law).
- Electric-drive vehicles would be favoured by strong regulations addressing pollutants (apart from CO₂).
- Initial introduction of EVs by government fleets to help spur manufacture.
- Public transport vehicles, two/three-wheeled vehicles – exploit EVs in these segments to promote EVs for individual consumers and increase battery production scales.
- Direct provision of recharging infrastructure in public areas.

Roadmap Context

Biofuels for Transport & Bioenergy for heat and power

- Roadmaps are intended to:
 - Highlight pathway(s) to reach large scale production of sustainable biomass to produce heat, electricity and biofuels, consistent with ETP 2010
 - Focus on the key steps over the next 5-10 years, as well as long-term milestones, including:
 - Identify barriers and obstacles and how to overcome these
 - Identify key conversion pathways
 - Key RDD&D gaps and how to fill them while ensuring sustainability
 - Identify market requirements and policy needs
 - Define international collaboration needs
- Undertake roadmaps in 2 parts
 - Part I Conversion technologies and end use
 - Part II Biomass feedstocks and sustainability

Timeline/Tasks

- Workshop on conversion technologies, end-use and markets
 - Workshop on biofuel technologies held in April 2010; WS on bioenergy technologies in early 2011
- Workshop on sustainable feedstock supply
 - Results will be relevant to both roadmaps
- Develop draft roadmap and circulate to a wider stakeholder group (incl. workshop participants) for review
 - Biofuel roadmap draft will be circulated in late October 2010
- Complete missing analysis and refine roadmap
- Roadmaps to be published late 2010/early 2011 (biofuel) and mid 2011 (bioenergy)

Goals for this Workshop

- Identify the potential for bioenergy production
 - Land availability? Potential for yield/ area expansion?
 - Can we meet BLUE Map projections?
- Prospects for international biomass trade
 - Where can it happen? How can it drive/ hinder use of bioenergy?
- Identify the efforts needed to ensure fully sustainable bioenergy production
- Point out key areas and steps for international collaboration
- Identify key policy elements needed to achieve target trajectories in a sustainable fashion
- Agree on next steps, and key issues to tackle in the further roadmap work

Workshop Process

- There will be 3 sessions over the next day and a half Session I: Bioenergy Potential
 - state of the art of potential assessment, regional distribution, promising energy crops and key RD&D needs to mobilise the potential

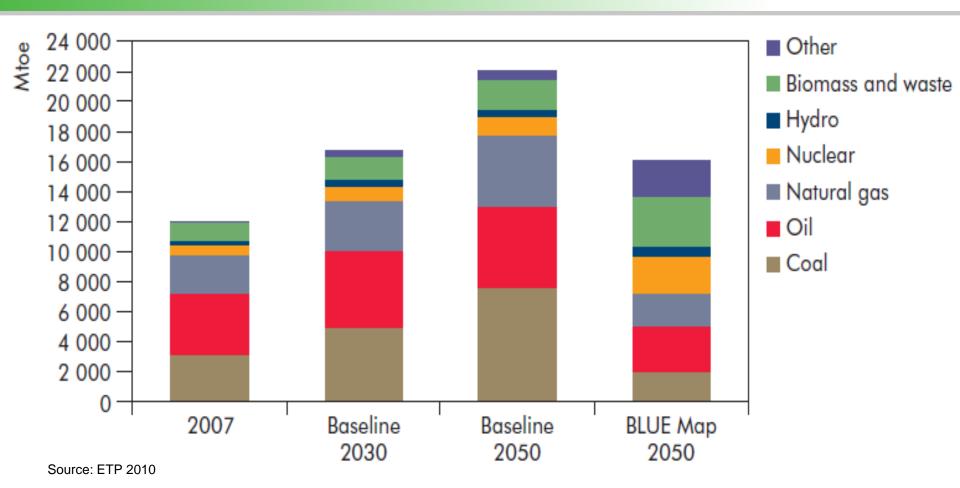
SessionII: Sustainability and biomass markets

 Sustainability indicators, sustainable land use management, biomass trade, market barriers and actions needed

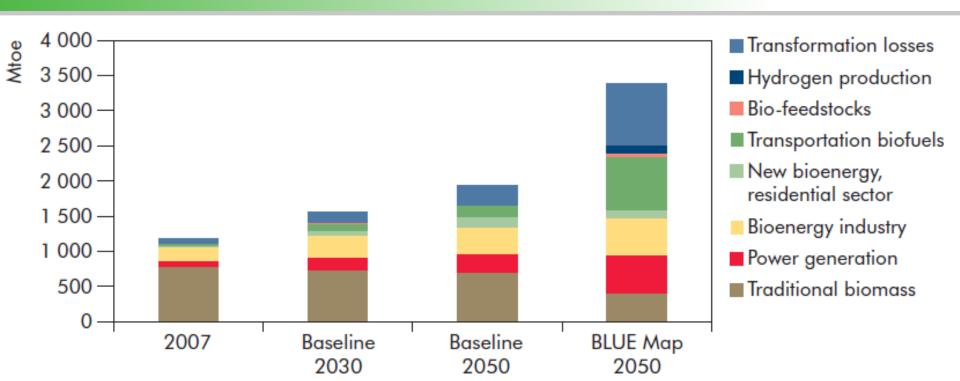
Session III: International collaboration & next steps

- International collaboration to help meet targets, key roadmap messages, next steps in the process
- Following this workshop, the roadmap will be drafted and circulated for reviewed (by end of October)

Background: ETP projections as a foundation for roadmap development

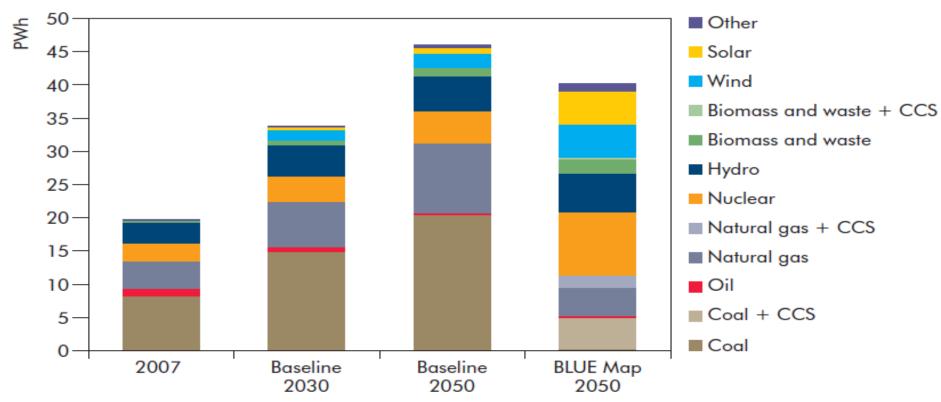

- IEA ETP 2010 provides detailed projections of global energy use to 2050, calibrated to WEO 2009
- ETP BLUE Map scenario depicts a set of pathways to reach a 50% reduction in global energy-related CO₂ by 2050
 - Based on cost-minimization, up to USD 175/ton CO₂ by 2050
 - Uses a back-casting approach to identify pathways and rampup rates for different technologies and new fuels
 - Use of bioenergy roughly triples by 2050, biofuels demand in transport increases 10-fold

- Biomass currently provides around 1100 Mtoe (50 EJ) of primary energy per year
 - 190 Mtoe (8 EJ)/yr of commercial heat and power and 40 Mtoe (1.7 EJ)/yr of liquid transport fuels
 - Traditional biomass accounts for over 800 Mtoe (35 EJ) /yr
- In BLUE Map scenario biomass use increases to around 3400 Mtoe (140 EJ)/yr in 2050.
 - This will require roughly 7 000 Mt dry biomass
 - between 375-750 Mha* of land needed, if 50% come from crop and forest residues and the rest from purpose grown energy crops


World TPES in ETP 2010

- Use of biomass increases 3-fold in the BLUE Map scenario, and provides 20% of TPES (140 EJ) in 2050
- Bioenergy accounts for roughly 10% of energy related CO₂ emission reductions in 2050

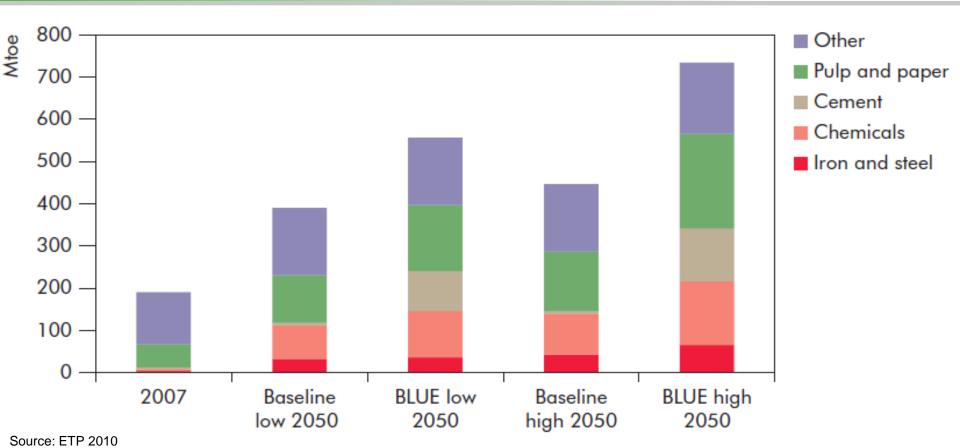
Note: The chart includes transformation losses in the production of liquid biofuels from solid biomass.


Source: ETP 2010

- Modern bioenergy production increases significantly in Blue Map, whereas traditional biomass use is reduced by 2050
- Around 50% of biomass demand in the BLUE Map scenario is for production of biofuels for transport

Electricity sector

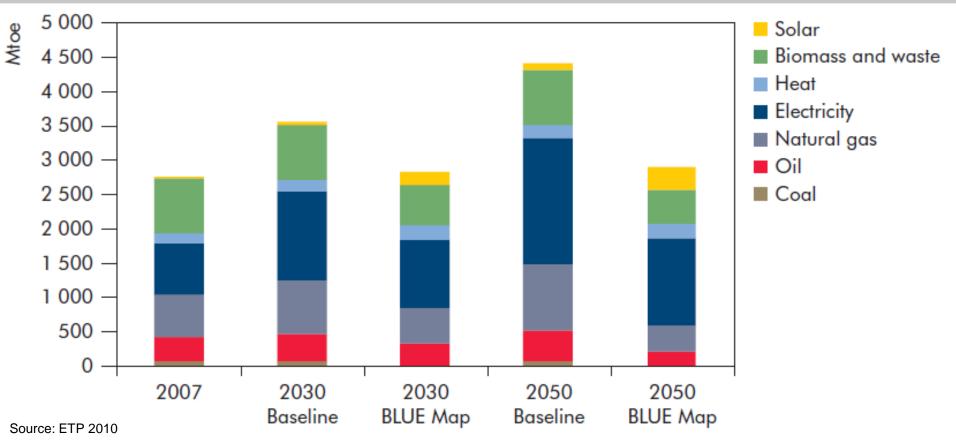
Global electricity production by energy source and scenario


Note: Other includes electricity generation from geothermal and ocean technologies.

- Biomass electricity generation increases significantly and provides 6% (2460 TWh) of total electricity in BLUE Map in 2050
- By 2050, all regions produce at least 50% of their electricity from renewables

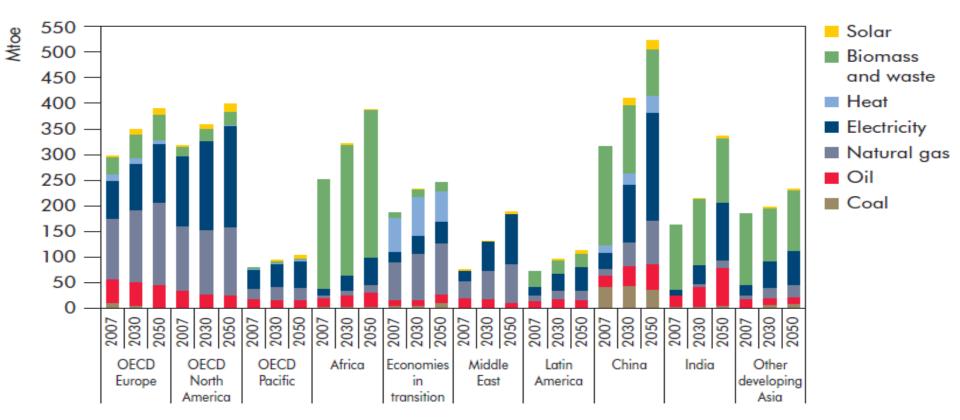
Source: ETP 2010

Industry



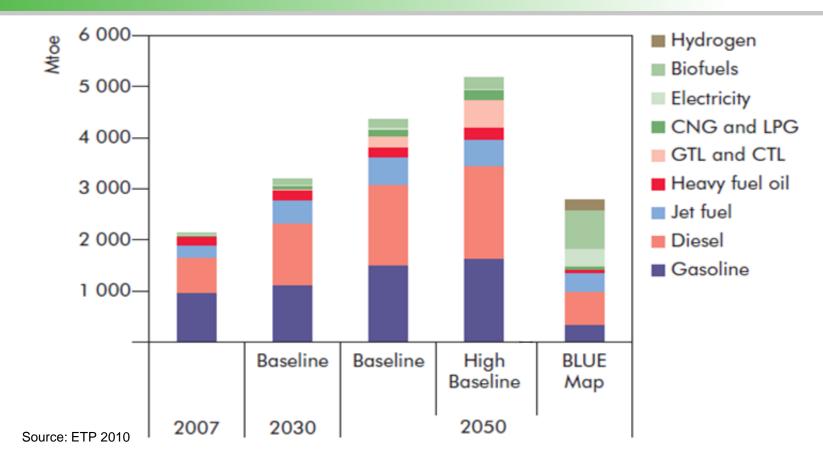
- By 2050, biomass use in industry reaches between 560 730 Mtoe (23-31 EJ), accounting for 12-14% of total industrial energy use in BLUE Map
- Strongest demand growth comes from the chemical industry, followed by cement and iron/steel sector
 © OECD/IEA 2010

Buildings



- Total biomass use in the buildings sector decreases from 805 Mtoe (34 EJ) in 2007 to 491 Mtoe (21 EJ) in 2050 in the BLUE Map Scenario
- Modern biomass fuels and increased efficiency reduce use of traditional, low-efficient biomass for heating and cooking

Buildings - Residential sector



Source: ETP 2010

- Biomass continues to play a major role in the residential sector outside the OECD, even in BLUE Map
 - → mainly used in the residential sector in Africa, India and other developing Asia

Transport sector

- In BLUE Map, transport energy use returns nearly to 2007 level, with more than 50% very low CO₂ fuels
- Total biofuel use in BLUE Map reaches 760 Mtoe (32 EJ) in 2050, with the major share coming from advanced technologies
- Biofuels will be particularly important to decarbonise planes, marine vessels and trucks

Goals for this Workshop

- Identify the potential for bioenergy production
 - Land availability? Potential for yield/ area expansion?
 - Can we meet BLUE Map projections?
- Prospects for international biomass trade
 - Where can it happen? How can it drive/ hinder use of bioenergy?
- Identify the efforts needed to ensure fully sustainable bioenergy production
- Point out key areas and steps for international collaboration
- Identify key policy elements needed to achieve target trajectories in a sustainable fashion
- Agree on next steps, and key issues to tackle in the further roadmap work

Workshop Process

- There will be 3 sessions over the next day and a half Session I: Bioenergy Potential
 - state of the art of potential assessment, regional distribution, promising energy crops and key RD&D needs to mobilise the potential

SessionII: Sustainability and biomass markets

 Sustainability indicators, sustainable land use management, biomass trade, market barriers and actions needed

Session III: International collaboration & next steps

- International collaboration to help meet targets, key roadmap messages, next steps in the process
- Following this workshop, the roadmap will be drafted and circulated for reviewed (by end of October)

Key Questions for Discussion 1

- What are the key roadmap elements that need to be included?
- Where do we set the boundaries for what the roadmap process will consider?
- What assessment/evaluation criteria should be used in the process?
- What additional questions should the meeting and the roadmaps address?