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Carbon Capture Simulation Initiative (CCSI)
To accelerate the path from concept (bench) to deployment (commercial power plant)
by lowering the technical risk in scale up.
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National Risk Assessment Partnership

National Risk Assessment Partnership (NRAP)

To accelerate the path to CCUS deployment through the use of science-based prediction
to quantify storage-security relationships, thereby building confidence in key decisions.
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Leveraging DOE’s competency in science-based prediction for engineered-
natural systems to build confidence in the business case for CO, storage.

Building toolsets and the calibration & validation data to resolve questions like...
e How should a site be monitored post injection? e What are appropriate operational envelops relative to injection

pressures? ® What are the potential long-term costs associated with monitoring?

e What is the potential long-term liability? e Will stored CO, leak, impact groundwater, or induce seismic events?
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What information is needed to provide the confidence necessary to consider an
alternative approach to PISC monitoring needs?

Prelim. Formation-Specific Estimates
NETL (Morgan et al., in progress)
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* IPCC (2005) estimated post-

Operations Costs injection monitoring costs to be
<10% of project costs.

IPCC (2005) EPA (2010)
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Monitoring/PISC

* Post Class VI estimates range from
Costs

35-50% of total costs.

* Primary drivers for costs include:

pre-Class VI
Class VI

* long time frame (50 yrs)

* large area-of-review

Us$ / tco,

Ui

* large battery of techniques
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A reduction of 1-2 $/ton CO, would mean a savings of $50-250 million per project.
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Toolsets and Science Base (Data for Calibration/Validation)

NRAP Tasks and Toolsets

Targeted Assessments through Application

EPA Class VI Review?

FY2011

FY2012 FY2013

FY2014 FY2015

Reservoir

Release &
Transport

Groundwater

Induced
Seismicity
Atmosphere

B L L o LA

FY2020

Generation 1

flow only

2 reservoir classes

multiple reservoir simulators
stochastic permeability

wellbores (flow + phase change)

faults (flow + phase change)
1D flow into thief zones

TDS, pH

equilibrium geochemistry
2 endmember aquifers
CO, & brine flux

hazard assessment

total flux only

N=TL

Generation 2

flow & geomechanics

3 reservoir classes (EOR)
quantified trapping mechanisms
AP due to semi-permeable caprock

wells (flow+chemistry w/ varying
permeability; field-based
initial state, wellbore failure

faults/fractures/caprock
(flow+geomechanics; fault-
zone complexity)

porous flow through overburden

TDS, pH, metals
multiple leakage sources

hazard and damage risk
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Generation 3

4 reservoir classes

wellbores/fractures (flow,
chemistry, geomechanics)

coupling of flow in wells,
faults, & porous media

heterogeneous overburden

TDS, pH, metals, organics
kinetic geochemistry
co-constituents

redox geochemistry

hazard, damage and
nuisance risk

atmospheric dispersion

NRAP

National Risk Assessment Partnership



NRAP’s approach to quantifying performance relies on

reduced-order models to probe uncertainty in the system.
IAM
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Profils

A. Divide system into
discrete components Energy Data eXchange
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B. Develop detailed IS~ — - |
component models
that are validated

against lab/field data
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NRAP Integrated Assessment

Potential
Receptors or
Impacted
Media

(System) Models

Release and
I _:_> Transport
l iz 4
7 models (ROMs) that . X
1 S rapidly reproduce T 4"_ Storage
' L component model : ‘_V’. Reservoir
e predictions smEmmmEEs

D. Link ROMs via integrated assessment
models (IAMs) to predict system

E. Develop strategic monitoring performance & risk; calibrate using
protocols that allow verification of lab/field data from NRAP and other
predicted system performance sources
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Approach to Development of Reduced-Order Models (ROMs):
Case Study at a Candidate Field Site

CO, Plume Pressure
(a) (b)

Sensitivity analysis
Identify key variables that
control component behavior

|

Detailed Simulations
Multiple simulations of detailed €
component models (reservoir,
wellbores, faults, aquifer)
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1t AP, 200y

Define Key Parameters for ROM
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ROM Development g
* Look-up tables (LUTs)
L ° Res‘p.o_nse. surf.aces (e.g. via PSUADE) ®
* Artificial intelligence approaches S
* Analytical relationships e
(e.g., polynomial chaos expansion) S

from Wainwright et al. (2012) NRAP-TRS-111-002-2012
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Building the Toolsets

( »
I:e;erv«:ir /.WE"S \ rls 1
B o . . . Aquifer ( E \
* First-of-a-kind toolsets for science-based, quantitative |* '@ — - | SIMRISK
evaluation of risks and uncertainties ‘;',; \ /e [ ot cltton s s
et » s 4 Iy
o Leakage risks (reservoirs to receptors) s ST BENG | U] [
. e e o
e Induced seismic events —
|\ J

e Site-specific and adaptable ROMs

e Reservoirs (3 classes; 3 injection scenarios)
e Wellbores (open and cemented) m

Linking function

Simple
T (U L

3

model #1

* Fractures (discrete and networks)

Simple
model #2

e Aquifers (two major types)

¢ Evaluated numerous approaches to reduced-order  co;Flow Rate
models (lookup table to artificial intelligence)

4000

e Achieve balance between fidelity and speed
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Building the Science Base

e Developed underpinning, physics-based models for wellbores and
fractures 7500~ 20000008402,
TDS TDS. mg/L
e Demonstrated validity and limitations of de-coupling assumption in ol oL -soomot. || 1HEe:
integrated assessment models T aae0s
8.80E4+03
: : : £ e
e Established “no-impact” threshold values for two major classes of > S50 i
aquifers
6000 -
e Expanded science base and data needed for model calibration No Impact = 420 mglL
e Lab studies on cement, shale, aquifers o I S
. L. . . 4. X,
e Geostatistical studies on wellbore characteristics "
groundwater

e Natural analog studies on reservoirs/aquifers

confining pressure
confining pressure
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Applying the TOOISEtS Leaky Storage Cases

e Generated first quantitative risk profiles for long-term behavior mo__ 5 %{c‘}:ﬁjﬁe"s
e Route to quantifying probability of meeting containment goals g m—_ e sz] oMw4
 Demonstrated use of IAMs to quantitatively identify key subsurfaceg g T o
parameters that impact risk at a site 2 oo M | Adurer
e Developed a preliminary technique for risk-based monitoring - m_' i A;tfd _}?ﬁ

network design of CO, storage sites l , ,
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Applying the Toolsets

e Generated first quantitative risk profiles for long-term behavior
e Route to quantifying probability of meeting containment goals

e Demonstrated use of IAMs to quantitatively identify key subsurface:
parameters that impact risk at a site

e Developed a preliminary technique for risk-based monitoring
network design of CO, storage sites
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Leak Rate (g/s)

2"d generation risk profiles for atmospheric release can be used
to assess retention goal (>99%) relative to pre-existing wells.

CARBON DIOXIDE

CAPTURE
AND STORAGE

> Inclusion of residual trapping lowers release
(i.e., raises the “% Retained”)

> System dynamics are dominated by individual leaky wells

Integrated Leak Rate over Entire Reservoir Predictions using Wellbore Permeability Distributions
Derived from Future Gen EIS 10-2
- Well density = 10 wells/km? 99.593999
2 . Average over 750 realizations -
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In all 24 cemented well scenarios evaluated, cumulative CO, leakage remained well within
IPCC storage permanence scenario of 99% retention after 1000 years.
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Applying NRAP’s Work in EPA’s UIC Program
(for example)

Allow development of site-specific risk profiles for
different project phases to support science-based
decision-making

Improve permitting efficiency
Transitioning from Class Il to Class Vi
Inform the Adaptive Approach to the Class VI Rule

Facilitate consistent information-sharing among
stakeholders
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NRAP Tools can help address uncertainty
in AoR quantitatively.

Saturation Pressure Buildup Area of Pressure Buildup

1 .\'- o o Sl \ 3
10 150 200 0 S0 100 130 200
Thene, g Tine, f

from Wainwright et al. (2012) NRAP-TRS-I11-002-2012
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* AoR based on 0.5 Mpa pressure threshold can be much larger than CO, plume

AoR Results for 30-Year Injection Period

* Ratios depend on injection rate, permeability, and threshold pressure
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Induced Seismicity

Tool & Method Development

e Developed a probabilistic seismic hazard assessment
(PSHA) tool for induced seismicity
— adapted widely accepted conventional PSHA approach

e Extending development to assess damage and
nuisance (felt event) risks

— demonstration application to realistic CO, injection scenarios based
on In Salah (Algeria)

General Trends & Relationships

e Rates of occurrence and sizes of earthquakes are
determined by tectonic stress and reservoir pressure

— sensitive to fault permeability and a few key parameters in the law
governing the evolution of fault frictional strength

* Risk of CO, leakage may be coupled to slip on faults
during earthquakes
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High costs and large uncertainties suggest a phased
approach to seismicity management

Characterization & Modelling Risk Assessment
Monitoring
e Site-screening e Regional stress * Back-of-the- e Red-flags
estimates envelope e Atlas
e Fault density
estimates
* Pre-injection e 3D seismic e Simple models e Qualitative
* XLOTs Assessments
e FMI  PSHA
e Limited
microseismic
* Injection & PISC e 4D seismic e Sophisticated * Traffic-light
e Full microseismic models  PSRA

-- Cost/benefit of additional methods assessed based on evolving project conditions.
-- Baselines are important.
-- Timely processing and interpretation of data are important.
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Planned Future Products

e AoR & PISC tools for facilitating dialog during the permitting process

e Complete third generation toolsets for quantifying long-term performance
e ROMs, IAMs
e Investigation of key influence parameters

e |JAMs that integrate monitoring and mitigation strategies

* Risk-based monitoring protocols for verification (operators, regulators, ...)

e Field-calibrated toolset for forecasting induced seismic risk to aid operators
and regulators (e.g., confidence in injection envelops)

¢ Induced seismicity protocol document

* Synthetic datasets for validation of risk methods (within & outside NRAP)?
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Thank You!
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National Risk Assessment Partnership
Science-based prediction of engineered-natural systems is a core competency of the U.S. Department of CONTACTS
Energy (DOE) that cross cuts many of today’s energy challenges. Over decades, DOE has built a unique set ~ George Guthrie
of resources for predicting how these complex and heterogeneous systems behave under extreme Technical Director
conditions and over large ranges in time. george.guthrie@netl.doe.gov
Tom Richard
Deputy Technical Director
trichard@ psu.edu
Don DePaolo
——-r— Chair, Executive Committee
- — T djdepaolo@|Ibl.gov
Y % Robert Romanosky
== < 7 0 By Technology Manager,
== : e J Crosscutting Research
Seismicity robert.romanosky@netl.doe.gov
. . . o " , X Regis Conrad
The Natlorfal Risk Assessment Partnership (NRAP)—-ap initiative within DOE’s Ofﬁ.ce of Fossil Energy and led Director, Crosscutting Research
by the National Energy Technology Laboratory—applies DOE’s core competency in science-based Program

prediction for engineered—natural systems to the long-term storage of carbon dioxide (CO;). regis.conrad@hg.doe.gov

NRAP relies on integration of expertise and resources across five national labs (LANL, LBNL, LLNL, NETL, and
PNNL).

2 % \/
NETL-RUA ‘\\n i '
e ———— _—\ LANationalLaboratnry +LosAlamos  pacific Northwest
sopcaach

edx.netl.doe.gov/nrap or netl.doe.gov/nrap



