

Sustainability of bioenergy: from theory to practice. Overview of concepts, policies and case studies

Dr. Leire Iriarte

Research Fellow, IINAS

International Institute for Sustainability Analysis and Strategy

presented at the Expert workshop for the How2Guide for Bioenergy Bangkok, 23-24 July, 2014

research sponsored by

Context: Many Projects and Studies

- Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in gef Developing Countries (FAO/UNEP/UNIDO)
- GBBEP Global Bioenergy Partnership
 - D Indicators for Sustainable Bioenergy <u>http://www.globalbioenergy.org</u>
- IEA Bioenergy Sustainability of certified wood bioenergy feedstock supply chains: Ecological, operational and international policy perspectives. IEA Bio Tasks 40 + 43

- Joint Workshops on extending the RED to forest bioenergy www.iinas.org/redex.html
- biomasspolicies Sustainable bioenergy in EU28 <u>www.biomasspolicies.eu</u>
- S2BiOM Resource-efficient bioeconomy in Europe <u>www.s2biom.eu</u>

Supporting a Sustainable European Bioenergy Trade Strategy (IEE) <u>www.bioenergytrade2020plus.eu</u>

Competing Uses for Biomass...

POTENTIALS Biomass cultivation (= lar Biogenic residuals	nd)			D	EMAND SECTORS Heat Power				
Biogenic residuals Wind, water, etc.	Baland	ce n	eeded!	Мо	torised transport Food & Feed				
					Raw materials				
GOALS / CONSTRAINTS									
Nature conservation									
Climate change mitigation Security of supply									
		loyn Costs							

Source: IINAS, IFEU, Shell (2012)

Environment

Bigger Picture (I)

International Institute for Sustainability Analysis and Strategy

Source: IINAS calculation for 2010 based on IEA (2014) and nova (2012)

research sponsored by

Bigger Picture (II)

International Institute for Sustainability Analysis and Strategy

Current global biomass use for all human activities:

Map of selected initiatives related to sustainability of forest bioenergy

Source:

IINAS International Institute for Sustainability Analysis and Strategy

Selected policies

- EU: EU RED for biofuels and bioliquids. For forest bioenergy:
 - **UK:** Demonstrate SFM (Category A: forest certification scheme or Categorgy B: equivalent credible evidence)
 - NL: Energy Agreement and negotiated sustainability criteria (NTA8080 and FSC)
- US: RFS (Renewable Fuel Standard 2) + Clean Power
 Plan. California: Low Carbon Fuel Standard
- **BR:** Agroecological zoning (federal level and state level for various crops e.g. sugarcane)
- MZ: National Biofuels Policy and Strategy (2009)

Bioenergy

European Environment Agency

research sponsored by

Sustainable Biomass...

- **Key Criteria (preliminary list):**
 - **Resource** efficiency: make the most out of **limited** resource land (>100 GJ/ha), residues (> 60%), incl. cascading
 - GHG emissions savings, including iLUC (agricultural crops, incl. SRC) + C stock changes (for **forest** bioenergy and **straw**)
 - **Biodiversity**: high-biodiverse areas and management practice (all cultivation systems, incl. forestry)
 - Air emissions, water and soil impacts
 - Food, fuelwood & land tenure security
 - Balance of (rural) employment & income

research sponsored by

Bioenergy, Land and Food/Feed/Fuel

International Institute for Sustainability Analysis and Strategy

Bioenergy = opportunities, but development needs steering (GBEP Sustainability Indicators www.globalbioenergy.org)

Key role for bioenergy in developing contexts:

- Agriculture (often underdeveloped) → bioenergy investment helps improving yields & infrastructure
- In the forestry sector → rural development + access to modern energy can reduce deforestation pressure
- Reducing land competition → Intercropping with food and agroforestry + cultivation of perennial crops on low-carbon and degraded land improves C balance and helps restoring soils

Bioenergy

research sponsored by

Case: Ethanol in Sierra Leone

- International Institute for Sustainability Analysis and Strategy
- Makieni project (www.addaxbioenergy.com/en/the-makeni-project.php)
- Sugarcane plantation (approx. 10,000 ha) + ethanol refinery (85 Ml/a)
- Biomass power plant (approx. 100,000 MWh) and related infrastructure
- 2,750 employees
- RSB certified
- Germany supports national VGGT implementation project in Sierra Leone (through FAO) → opportunity to mainstream Addax experience!

research sponsored by

Case: Eucalyptus in Uruguay

- Forestal Oriental (UPM, Uruguay) http://www.upm.com/EN/ABOUT-UPM/Businesses/Pulp/Plantations/Forestal_Oriental/Pages/default.aspx
- 230,000 ha of land (degraded grassland), 60 % eucalyptus approx. → Pulp mill. 2 nurseries
- Fomento: programme that encourages the landowners to diversify their land use with sustainable plantation forestry
- •ISO 9001, ISO 14001, OHSAS 18001
- Forest Management and Chain-of-Custody Standards FSC and PEFC
- Part of the New Generation Plantations Project

European Environment Agency

research sponsored by

Final Thoughts

- Harmonization of schemes is needed
- Coherent sustainability requirements for all bioenergy (electricity, heat, transport) and biomaterials, biorefineries etc. needed
- **Bioeconomy**: not food (or fuelwood) vs. fuel but land use
- Opportunities with residues and wastes (cascading) and marginal and degraded land : **yes**, but consider trade-offs
- Address **social** effects (positive and negative)
- Improve indicators: C balances, maps for biodiversity and nutrient depletion risk ("go" areas!)
- Integrated agro-energy-water and forest-energy projects needed to deliver on synergy opportunities
- Holistic vision of sectors, risks and opportunities

Bioenergy

More Information

International Institute for Sustainability Analysis and Strategy

www.iinas.org Contact: li@iinas.org

Federa Enviror Buildin

GHG accounting of forest bioenergy

- Bioenergy is **C-neutral** in the **long-term**
- IPCC budget approach, but sub-target of max. 0.1 °C increase per decade meant to protect biodiversity and to limit ocean acidification
- **Differentiation** needed: forest; forest product; material displacement and energy substitution
- Geographical scale: stand level vs. landscape level
- Models + simplified approaches: 5-20 years payback for most residues = nearly C neutral

Bioenergy

research sponsored by

Low Climate-Risk Feedstocks?

	Time horizon for CO ₂ emission reduction								
Woody biomass source for energy use	short (10 years)		medium (50 years)	long (centuries)				
	Coal	gas	coal	gas	coal	gas			
Boreal, stems final harvest			-		+	+			
Temperate, stems final harvest			+/-	-	++	+			
Harvest + thinning residues, landscape care & salvage wood*	+/-	+/-	+	+	++	++			
SRC on marginal agricultural land	+++	+++	+++	+++	+++	+++			
SRC replacing forest	-	-	++	+	+++	+++			
industrial residues, wastes	+++	+++	+++	+++	+++	+++			

-; --; ---: **bioenergy system emits more** CO₂eq than reference fossil system **in given time frame** +/-: GHG emissions of **bioenergy and fossil are comparable in given time frame** +; ++; +++: **bioenergy system emits less** CO₂eq than reference fossil system **in given time frame**

*For harvest/thinning residues & salvage wood, balance depends on alternative use (burning) and decay rates Source: own compilation based on JRC (2013)

research sponsored by

