Sustainability of bioenergy: from theory to practice. Overview of concepts, policies and case studies

Dr. Leire Iriarte
Research Fellow, IINAS
International Institute for Sustainability Analysis and Strategy

presented at the Expert workshop for the How2Guide for Bioenergy
Bangkok, 23-24 July, 2014
Context: Many Projects and Studies

- **Global Assessments and Guidelines** for Sustainable Liquid Biofuel Production in Developing Countries (FAO/UNEP/UNIDO)

- **Indicators** for Sustainable Bioenergy
 http://www.globalbioenergy.org

- **IEA Bioenergy** Sustainability of certified wood bioenergy feedstock supply chains: Ecological, operational and international policy perspectives. IEA Bio Tasks 40 + 43

- **Joint Workshops on** extending the RED to forest bioenergy
 www.iinas.org/redex.html

- **Sustainable bioenergy in EU28**
 www.biomasspolicies.eu

- **Resource-efficient bioeconomy in Europe**
 www.s2biom.eu

- **Supporting a Sustainable European Bioenergy Trade Strategy** (IEE)
 www.bioenergytrade2020plus.eu

Research sponsored by
Competing Uses for Biomass...

Balance needed!

Source: IINAS, IFEU, Shell (2012)
Source: IINAS calculation for 2010 based on IEA (2014) and nova (2012)
Bigger Picture (II)

Current global biomass use for all human activities:
approx. 175 EJ_{eq}

Wood 27 %

Fibers (e.g. textiles) 1%

materials 14%

energy 13%

feed from grasslands 28%

vegetable oils 8%

Cereals & rice 36%

Source: IINAS, EFI, JR (2014)

Biomass demand by 2050:
50 - 150 EJ for energy +
50 - 75 EJ_{eq} for materials +
100 - 200 EJ_{eq} for food & feed

Food & Feed 72 %
Map of selected initiatives related to sustainability of forest bioenergy

<table>
<thead>
<tr>
<th>International</th>
<th>Regional level (EU)</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment and Climate</td>
<td>NLBI Forests</td>
<td>EU Bioeconomy & Biodiversity Strategy</td>
</tr>
<tr>
<td>UN conventions (e.g. CBD, FCCC)</td>
<td>EU Resource Efficiency Roadmap</td>
<td></td>
</tr>
<tr>
<td>Forestry</td>
<td>Voluntary harvesting guidelines</td>
<td>FLEGT, EU Forest Strategy</td>
</tr>
<tr>
<td>Forest processes C&I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Several voluntary guidelines</td>
<td>Voluntary forest certification schemes</td>
<td></td>
</tr>
<tr>
<td>Voluntary forest certification schemes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioenergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBEP</td>
<td>Voluntary certification schemes: bioenergy (liquid biofuels and/or woody bioenergy)</td>
<td></td>
</tr>
<tr>
<td>FAO-UNEP UN Energy Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>EU RED (for 2G biofuels)</td>
<td></td>
</tr>
<tr>
<td>IDB scorecard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWF/WB scorecard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEF standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioenergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAO woodfuel C&I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomaterials (procurement)</td>
<td>Responsible purchasing processes</td>
<td></td>
</tr>
<tr>
<td>Responsible cultivation areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing institutions safeguards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: IINAS, EFI, JR (2014)

Color Key:
- Voluntary
- Mandatory

Research sponsored by
- UNEP
- IEA Bioenergy
- European Environment Agency
- Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
- Umwelt Bundesamt
Selected policies

- **EU**: EU RED for biofuels and bioliquids. For forest bioenergy:
 - **UK**: Demonstrate SFM (Category A: forest certification scheme or Category B: equivalent credible evidence)
 - **NL**: Energy Agreement and negotiated sustainability criteria (NTA8080 and FSC)
 - **US**: RFS (Renewable Fuel Standard 2) + Clean Power Plan. **California**: Low Carbon Fuel Standard
 - **BR**: Agroecological zoning (federal level and state level for various crops e.g. sugarcane)
 - **MZ**: National Biofuels Policy and Strategy (2009)
Sustainable Biomass...

- **Key Criteria (preliminary list):**
 - **Resource** efficiency: make the most out of **limited** resource land (>100 GJ/ha), residues (> 60%), incl. **cascading**
 - GHG emissions savings, including iLUC (**agricultural** crops, incl. SRC) + C stock changes (for **forest** bioenergy and **straw**)
 - **Biodiversity**: high-biodiverse areas and **management** practice (**all** cultivation systems, incl. forestry)
 - Air emissions, water and soil impacts
 - **Food, fuelwood** & **land tenure** security
 - Balance of (rural) **employment & income**
Bioenergy = opportunities, but development needs steering (GBEP Sustainability Indicators www.globalbioenergy.org)

Key role for bioenergy in developing contexts:

- **Agriculture** (often underdeveloped) → bioenergy investment helps improving yields & infrastructure

- In the **forestry sector** → rural development + access to modern energy can reduce deforestation pressure

- **Reducing land competition** → **Intercropping** with food and agroforestry + cultivation of perennial crops on low-carbon and degraded land improves C balance and helps restoring soils
Case: Ethanol in Sierra Leone

• Makieni project (www.addaxbioenergy.com/en/the-makeni-project.php)
• Sugarcane plantation (approx. 10,000 ha) + ethanol refinery (85 Ml/a)
• Biomass power plant (approx. 100,000 MWh) and related infrastructure

• 2,750 employees
• RSB certified
• Germany supports national VGVT implementation project in Sierra Leone (through FAO) → opportunity to mainstream Addax experience!

research sponsored by
Case: Eucalyptus in Uruguay

- Forestal Oriental (UPM, Uruguay) http://www.upm.com/EN/ABOUT-UPM/Businesses/Pulp/Plantations/Forestal_Oriental/Pages/default.aspx

- 230,000 ha of land (degraded grassland), 60% eucalyptus approx. → Pulp mill. 2 nurseries

- Fomento: programme that encourages the landowners to diversify their land use with sustainable plantation forestry

- ISO 9001, ISO 14001, OHSAS 18001

- Forest Management and Chain-of-Custody Standards FSC and PEFC

- Part of the New Generation Plantations Project
Final Thoughts

- **Harmonization** of schemes is needed
- **Coherent sustainability requirements** for all bioenergy (electricity, heat, transport) and biomaterials, biorefineries etc. needed
- **Bioeconomy**: not food (or fuelwood) vs. fuel but **land use**
- Opportunities with residues and wastes (cascading) and marginal and degraded land: **yes**, but consider trade-offs
- Address **social** effects (positive and negative)
- **Improve** indicators: C balances, maps for biodiversity and nutrient depletion risk (“go” areas!)
- **Integrated** agro-energy-water and forest-energy projects needed to deliver on synergy opportunities
- **Holistic vision** of sectors, risks and opportunities
More Information

www.iinas.org
Contact: li@iinas.org

research sponsored by

UNEP
IEA Bioenergy
European Environment Agency
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
Umwelt Bundesamt
GHG accounting of forest bioenergy

- Bioenergy is **C-neutral** in the **long-term**
- **IPCC** budget approach, **but** sub-target of max. 0.1 °C increase per decade meant to protect biodiversity and to limit ocean acidification
- **Differentiation** needed: forest; forest product; material displacement and energy substitution
- Geographical scale: stand level vs. **landscape** level
- Models + simplified approaches: 5-20 years **payback** for most **residues** = nearly C neutral
Low Climate-Risk Feedstocks?

<table>
<thead>
<tr>
<th>Woody biomass source for energy use</th>
<th>Time horizon for CO₂ emission reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short (10 years)</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
</tr>
<tr>
<td>Boreal, stems final harvest</td>
<td>---</td>
</tr>
<tr>
<td>Temperate, stems final harvest</td>
<td>---</td>
</tr>
<tr>
<td>Harvest + thinning residues,</td>
<td>+/-</td>
</tr>
<tr>
<td>landscape care & salvage wood*</td>
<td></td>
</tr>
<tr>
<td>SRC on marginal agricultural land</td>
<td>+++</td>
</tr>
<tr>
<td>SRC replacing forest</td>
<td>-</td>
</tr>
<tr>
<td>industrial residues, wastes</td>
<td>+++</td>
</tr>
</tbody>
</table>

-; --; ---: *bioenergy system emits more* CO₂eq than reference fossil system in given time frame
+/-: GHG emissions of bioenergy and fossil are comparable in given time frame
+; ++; +++: *bioenergy system emits less* CO₂eq than reference fossil system in given time frame

*For harvest/thinning residues & salvage wood, balance depends on alternative use (burning) and decay rates

Source: own compilation based on JRC (2013)