Country Presentation
on Status of Bioenergy Development
In Malaysia

by
Nasrin Abu Bakar
Malaysian Palm Oil Board
Energy situation in the country

Primary Energy Supply 2012
- Hydropower: 3%
- Coal: 19%
- Natural gas: 46%
- Crude oil: 32%

Total: 83939 ktoe

Final Energy Consumption 2012 (Fuels)
- Petroleum: 53%
- Natural gas: 22%
- Electricity: 21%
- Coal: 4%

Total: 46710 ktoe

Final Energy Consumption 2012 (by Sectors)
- Industry: 30%
- Transport: 37%
- Agriculture: 2%
- Residential & commercial: 15%
- Non-Energy Use: 16%

Overview of the Malaysian Palm Oil Industry

- World’s second largest CPO producer
- World’s second largest exporter of palm oil products.
- Crude Palm Oil production in 2013: 19.23 mil. tonnes (94.92 mill. Tonnes FFB)
- Export earnings in 2013: RM 61.36 billion

Palm oil, oil palm biomass and biogas are major feedstocks for Biofuel & RE development in Malaysia
1) Use of mesocarp fibre and shell in palm oil mills for combined heat & power generation

2) First Generation Biofuels using Palm Oil & Waste Palm Oil - as liquified fuel for transportation and industrial sectors

3) Off & On-grid of Renewable Energy – in solid (in particular EFB) and gaseous (POME biogas) for heat and power generation

4) Second Generation Biofuels using Oil Palm Biomass (Thermo-Chemical & Bio process conversion for multi-forms fuel)
As of May 2014, a total of 55 biodiesel manufacturing licenses with a total annual capacity of 6.18 million tonnes were approved under the Malaysian Biofuel Industry Act, 2007.

From the total, 20 biodiesel plants were in commercial production (since 2006 – not all in active production) with production capacity of 2.65 million tonnes/year.

In addition, there were 11 plants with production capacity of 1.03 million tonnes per year that have completed construction but yet to commence production.

Status of Approved Biodiesel Licencees (as at May 2014)

<table>
<thead>
<tr>
<th>Implementation Phase</th>
<th>No.</th>
<th>Production Capacity (Mil. T/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Production *</td>
<td>20</td>
<td>2.65</td>
</tr>
<tr>
<td>Completed Construction **</td>
<td>11</td>
<td>1.03</td>
</tr>
<tr>
<td>Under Construction</td>
<td>5</td>
<td>0.81</td>
</tr>
<tr>
<td>Pre-Construction / Planning</td>
<td>19</td>
<td>1.69</td>
</tr>
<tr>
<td>Total Approved</td>
<td>55</td>
<td>6.18</td>
</tr>
</tbody>
</table>

* On and off

** Not in commercial operation
Palm Oil Mill – Waste Section

- Palm Shell
- Mesocarp Fibre
- Palm Oil Mill Effluent
- Empty Fruit Bunch
Oil Palm Biomass from Palm Oil Mills

<table>
<thead>
<tr>
<th>Biomass (wt% to FFB)</th>
<th>Quantity, Million tonnes</th>
<th>Moisture Content, %</th>
<th>Calorific Value, MJ/kg (dry basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre (13%)</td>
<td>12.34</td>
<td>37.00</td>
<td>18.8</td>
</tr>
<tr>
<td>Shell (6%)</td>
<td>5.69</td>
<td>12.00</td>
<td>20.1</td>
</tr>
<tr>
<td>EFB (23%)</td>
<td>22.88</td>
<td>67.00</td>
<td>18.9</td>
</tr>
<tr>
<td>POME (65%) (biogas)</td>
<td>61.70 (1728 mill m³)</td>
<td>-</td>
<td>20.0 MJ/m³</td>
</tr>
</tbody>
</table>

- Off-grid energy generated from shell and fibre used in POMs in year 2013 (based on 428 mills, 92.33 million tonnes of FFB processed at 20 kwh/tonne) was **1898.4 GWh or 396 MW**
Potential Electricity from Oil Palm Biomass

<table>
<thead>
<tr>
<th>BIOMASS & Biogas</th>
<th>Availability (mill. tonnes)</th>
<th>Lower CV, kJ/kg</th>
<th>Estimated Energy, MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFB (65% moist @ 100 % and 50% excess)</td>
<td>21.37 (10.69)</td>
<td>6,000 - 7000</td>
<td>1236 (@ 25% eff)</td>
</tr>
<tr>
<td>Palm Oil Mill Effluent (Biogas)</td>
<td>61.70 (1728 mill m³ biogas)</td>
<td>20 MJ/m³</td>
<td>533 (@ 40% eff)</td>
</tr>
</tbody>
</table>
EPP5: Building Biogas Facilities at Palm Oil Mills

- All palm oil mills to install biogas facilities (or methane avoidance) by 2020
- To encourage use as energy source for internal use and to supply to national electricity grid
- GNI – RM2.9 billion (~ USD 1 billion)

<table>
<thead>
<tr>
<th>Status</th>
<th>As of 16 July 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed Biogas Plants</td>
<td>66</td>
</tr>
<tr>
<td>Under Construction</td>
<td>11</td>
</tr>
<tr>
<td>Under Planning</td>
<td>150</td>
</tr>
</tbody>
</table>
Renewable Energy Development in Malaysia

8th Malaysia Plan (2001 – 2005)
- RE as the 5th fuel
- 5% RE in energy mix

9th Malaysia Plan (2006 – 2010)
- Targeted RE capacity to be connected to power utility grid:
 - 300 MW - Peninsular Malaysia;
 - 50 MW - Sabah
- Targeted power generation mix:
 - 56% natural gas, 36% coal, 6% hydro, 0.2% oil, 1.8% Renewable Energy
- Carbon intensity reduction target: 40% lower than 2005 levels by 2020

RE as of 31 Dec. 2013
- Connected to the utility grid (as of 2013): 149.78 MW
- Off-grid: >430MW (private palm oil millers and solar hybrid)

Source: Datuk Loo GT, 2nd ISES 2013
Policy Statement:

- Enhancing the utilisation of indigenous renewable energy resources to contribute towards national electricity supply security and sustainable socio-economic development

Objectives:

- To increase RE contribution in the national power generation mix;
- To facilitate the growth of the RE industry;
- To ensure reasonable RE generation costs;
- To conserve the environment for future generation; and
- To enhance awareness on the role and importance of RE.

RE Act 2011

- Enabled the establishment of SEDA Malaysia
- Launched the Feed-in Tariff Mechanism (FiT)
- Establish the RE Fund to finance the FiT.
- Came into force on 1st December 2011
National RE Target

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative RE Capacity</th>
<th>RE Power Mix (vs Peak Demand)</th>
<th>Cumulative CO2 avoided</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>73 MW</td>
<td>0.5 %</td>
<td>0.3 mt</td>
</tr>
<tr>
<td>2015</td>
<td>985 MW</td>
<td>6%</td>
<td>11.1 mt</td>
</tr>
<tr>
<td>2020</td>
<td>2,080 MW</td>
<td>11%</td>
<td>42.2 mt</td>
</tr>
<tr>
<td>2030</td>
<td>4,000 MW</td>
<td>17%</td>
<td>145.1 mt</td>
</tr>
</tbody>
</table>

FiT Status as of January 2014

<table>
<thead>
<tr>
<th>No.</th>
<th>Renewable Energy Sources</th>
<th>Approved (MW)</th>
<th>FiTCD (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biogas</td>
<td>29.53</td>
<td>11.73</td>
</tr>
<tr>
<td>2</td>
<td>Biomass</td>
<td>166.49</td>
<td>50.40</td>
</tr>
<tr>
<td>3</td>
<td>Small Hydro</td>
<td>130.99</td>
<td>15.70</td>
</tr>
<tr>
<td>4</td>
<td>Solar Photovoltaic (PV)</td>
<td>209.06</td>
<td>85.36</td>
</tr>
<tr>
<td></td>
<td>• Individual</td>
<td>26.28</td>
<td>20.82</td>
</tr>
<tr>
<td></td>
<td>• Non-Individual</td>
<td>182.78</td>
<td>64.54</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>536.07</td>
<td>163.19</td>
</tr>
</tbody>
</table>

Source: seda.gov.my & Datuk Loo GT, 2nd ISES 2014
Issues & Challenges of Palm Biomass / Biogas based Renewable Energy

- Competitiveness uses of biomass / POME for non-energy products
- Interconnection issue / load demand – location of the power plants (for grid connected power plant)
- Uncertainties of long terms biomass supply & pricing mechanism, logistic and transportation cost
- Need for more financial support and incentives
- Inconsistency of biomass fuel quality – EFB pre-treatment plant
- Inconsistency of biogas yield – due to low crop season and weather that may affect the microbes activity
- High capital investment - digester tank technology/grid connection
Recommendation & Conclusion

- To enhance Government’s initiatives/ policy and industry support / participation

- Promotes the use of RE for additional revenue from power generated, saving on the operational cost etc

- Promotes the green image of industry through the use of RE, thus lower carbon footprint and better market access to competitive markets.

- Diversify the use and potential market of RE from oil palm biomass and biogas (grid connection, rural electrification, industrial use ,etc)