

Plateforme Technologique de l'AIE: Atelier « Solaire thermique »

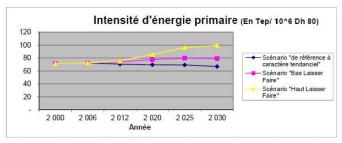
Oujda, Région de l'Oriental, Maroc

Philippe Papillon – INES philippe.papillon@cea.fr

Source

Royaume du Maroc Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement

Département de l'Energie et des Mines



المملكة المغربية

وزارة الطاقة والمعادن والماء والبينة قطاع الطاقة والمعادن

Direction de l'Observation et de la Programmation

Analyse prospective de la demande d'énergie à l'horizon 2030

Octobre 2011

Page 1

[≈] 20 avril 2012

- Le bâtiment : 36% de la consommation énergétique finale
 - > 29% au niveau résidentiel
 - > 7% au niveau du tertiaire.
- L'industrie : 29% de l'énergie finale
- Secteur agricole : 6% de la consommation énergétique

Source: http://www.aderee.ma/

¹ 20 avril 2012

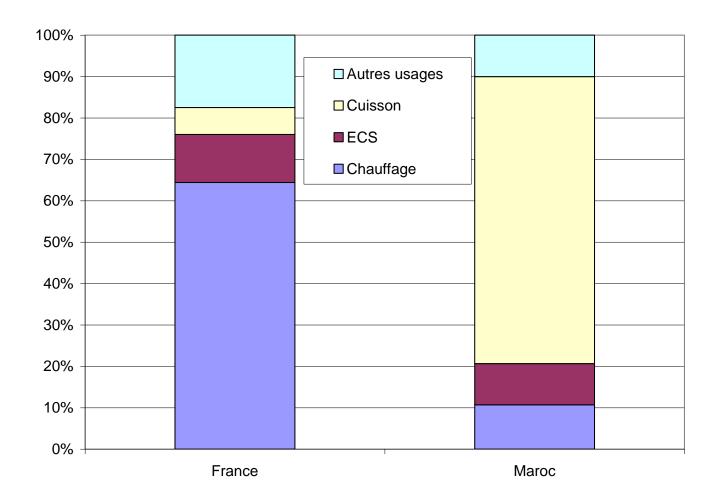
Consommation d'énergie finale par secteur : Résidentiel

Demande d'énergie finale par usage:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
cuisson	2 938	3 559	4 118	6 509	2,7
Eau chaude sanitaire	422	500	565	910	2,6
Chauffage	453	473	545	900	2,3
Eclairage	234	239	268	417	1,9
Electricité spécifique	190	315	491	941	5,5
TOTAL	4 214	5 086	5 987	9 676	2,8

Demande d'énergie finale par forme:


Scénario économique "Bas Maitrise d'énergie":

		(En 1000 Tep)			
	2000	2012	2020	2030	0,0
Electricite	344	608	933	1 487	5,0
Butane	1 177	2 248	3 284	6 890	6,1
Charbon de bois	143	130	120	100	-1,2
Energies traditionnelles	2 550	2 100	1 650	1 200	-2,5
TOTAL	4 214	5 086	5 987	9 676	2,8
Gas oil	16	23	58	84	
TOTAL GLOBAL	4 230	5 109	6 045	9 761	

Importance de l'identification des usages

Consommation d'énergie finale par secteur : Industrie

Scénario économique "Bas Maitrise d'énergie":

Demande de combustibles:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
IGCE:				•	
Sucre	170	172	176	232	1,0
Ciment	486	530	531	687	1,2
Papier	38	30	31	37	-0,1
Pate à papier	28	29	30	32	0,4
Phosphates	228	242	250	346	1,4
Acide+engrais	51	62	68	96	2,1
Total IGCE	1 001	1 067	1 087	1 429	1,2

IL:				
IAA	7	15	16	18
TC	74	86	108	140
AMC+BTP	230	257	257	337
CP	12	14	15	23
IMME	60	79	83	146
MINES +Divers	23	28	31	40
Total IL	406	479	511	704
Total industrie	1 407	2 109	2 163	1 810

IGCE: Industrie Grosse Consommatrice d'Energie

IL: Industrie Légère

IAA: Industrie Agro-Alimentaire

TC: Textile et Cuir

AMC : Matériau de Construction CP : Chimiques et Para-chimiques

IMME : industries mécaniques, métalliques et électroniques

⁵ 20 avril 2012 6

Consommation d'énergie finale

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR AGRICOLE</u>

Scénario économique "Bas Maitrise d'énergie":

		2030/2000 (En %)			
	2000	2010	2020	2030	0,0
Gas oil	731	1 213	1 891	2 573	4,3
Electricité	55	118	217	424	7,0
Total	786	1 331	2 108	2 997	4,6

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR TERTIAIRE

Scénario économique "Bas Maitrise d'énergie":

(En 1000 Tep)

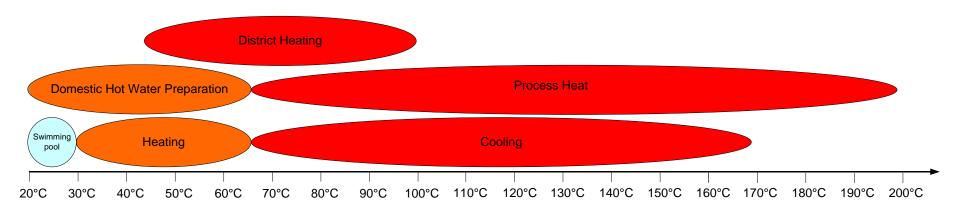
					2030/2000
	2000	2012	2020	2030	(En %)
Propane	18	74	83	110	6,2
Gas oil	314	435	768	1 123	4,3
Fuel oil	25	-	1	1	-
Energies traditionnelles	460	380	320	250	-2,0
Electricité	191	376	540	1 064	5,9
Total Tertiaire	1 009	1 265	1 711	2 546	3,1

Solaire Thermique : quelles applications ?

- experience experience
 Liten
- Les principales applications
 - > Chauffage Eau chaude sanitaire

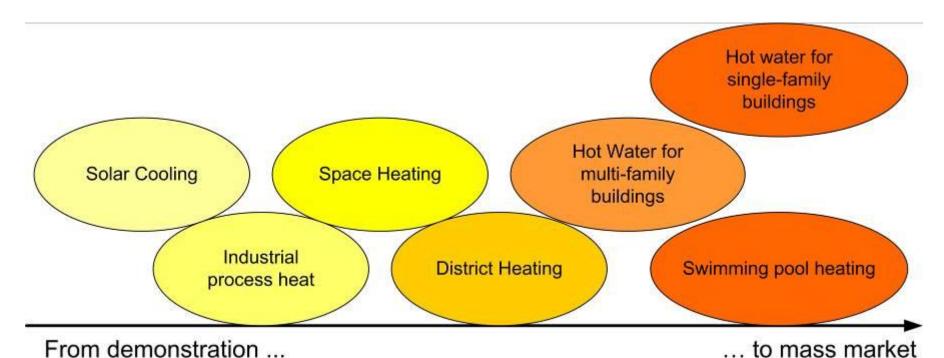
Chauffe-eau solaire à Rhizao City (Chine) (99% des appartements ont un chauffe-eau solaire)

> Eau chaude de process industriel



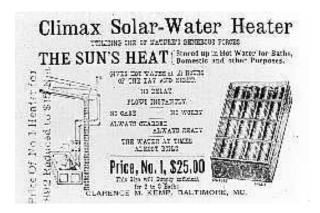
El Nasr Pilot Solar Steam Plant

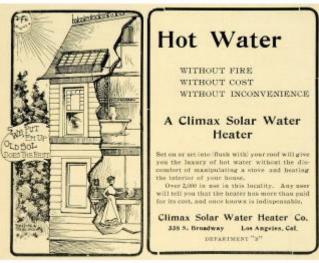
Les applications par gamme de température



Les applications par maturité technologique/marché

INCS INSTITUT NATIONAL




Chauffe-eau solaire

Chauffe-eau solaire

Publicité pour le 1er chauffe-eau solaire (1891)

Chauffe-eau solaire

Dans le monde

Chauffe-eau solaire (Inde)

Chauffe-eau solaire (Maroc)

DE L'ENERGIE SOLAIRE

Chauffe-eau solaire à Rhizao City (Chine) (99% des appartements ont un chauffe-eau solaire)

Chauffe-eau solaire (Guadeloupe)

Chauffe-eau solaire : Les principales technologies

- Chauffe-eau capteur stockeur
- Capteur et stockage associés
 - > Simplicité
 - > De multiples variantes
 - > Assez peu répandu

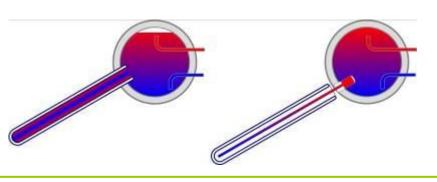
INSTITUT NATIONAL DELIGNEDGIE SOLADI

¹ 20 avril 2012

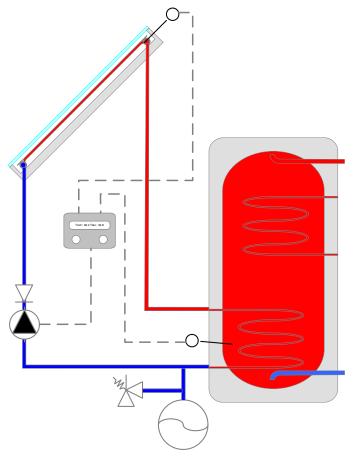
Chauffe-eau solaire : Les principales technologies

Capteur et stockage dissociés

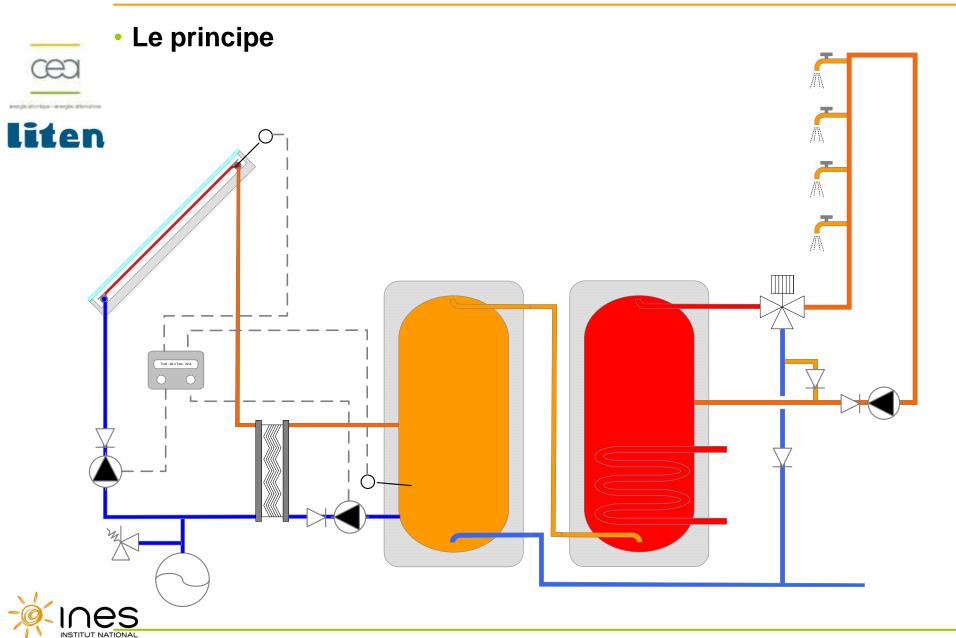
- > Technologie simple
- > Très grande diffusion


> Particulièrement adapté aux climats peu froids

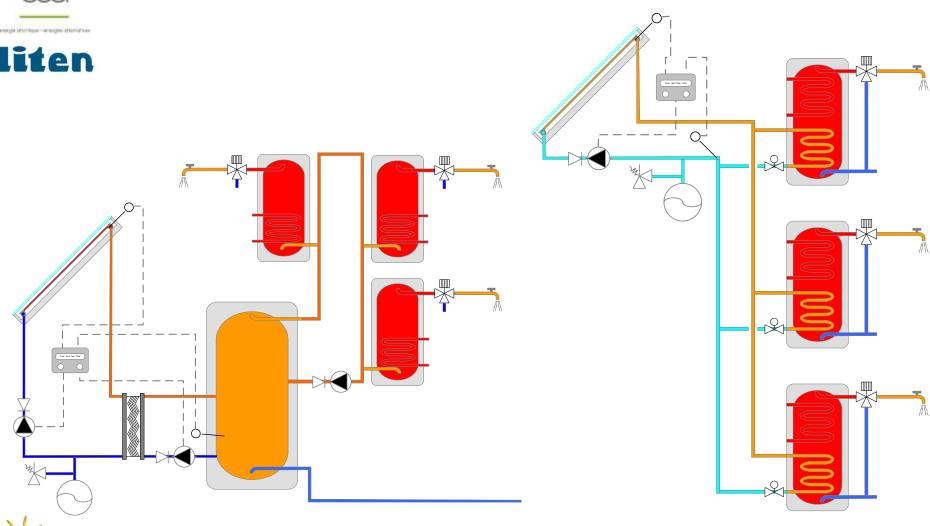
> Des variantes selon produits, climats, qualité de l'eau, ...



Chauffe-eau solaire : Les principales technologies



- Chauffe-eau à éléments séparés
- Circulation forcée
 - > Circulateur et régulateur
- Obligatoire lorsque:
 - > Risque de gel
 - Le stockage doit être placé à une altitude inférieure au capteur


Chauffe-eau solaire : les installations collectives

17

Chauffe-eau solaire: les installations collectives

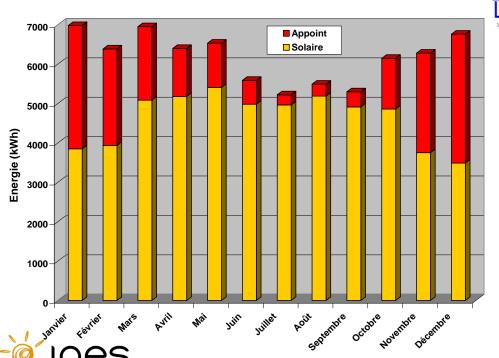
 Des variantes selon les contraintes d'implantation ou de facturation

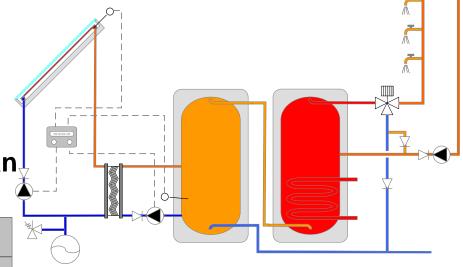
18

Chauffe-eau solaire: Cibles d'applications

- Equipements de Santé (hôpitaux, cliniques, maison de retraite)
 - Résidentiel (Individuel, Collectif)
- Hébergement (prisons, casernes)
- Equipements de Tourisme (hôtels, gîtes, campings)
- Equipements de Loisirs (piscines)

Chauffe-eau solaire : un exemple




Collectif

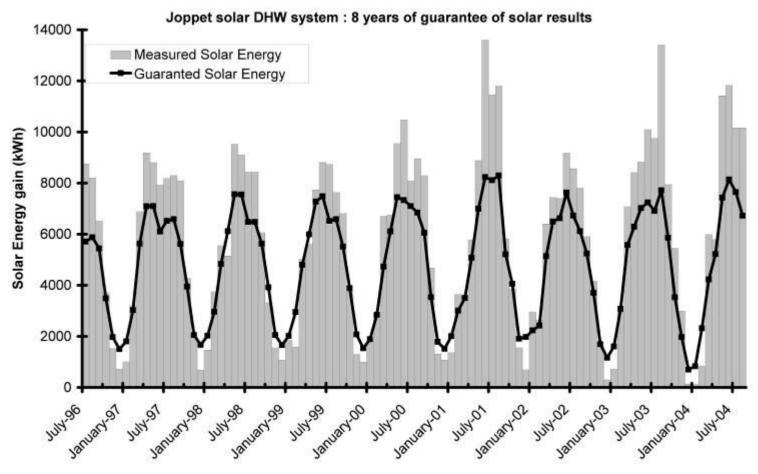
Climat de Casablanca

Liten · Consommation moyenne de 4000 l/j

60 m² de capteur solaire plan.

- Production de 900 kWh/m² de capteur
- 75 % de la consommation d'énergie assurée par le solaire

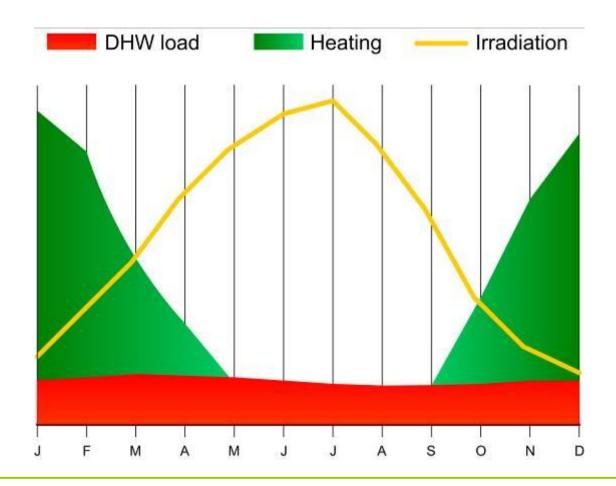
Chauffe-eau solaire : des procédures de qualité en collectif


La Garantie de Résultats Solaires

- Engagement contractuel entre :
 - Groupement constitué du Bureau d'études, du Fabricant de Capteurs, de l'Installateur et de la Société de Maintenance
 - > et le Maître d'Ouvrage sur les performances de l'installation solaire
- 2 phases
 - > Phase de vérification
 - > Phase de confirmation
 - > Durée totale : 5 ans
- Les valeurs garanties
 - > La production mesurée doit être supérieure à la production garantie
 - La production garantie vaut 80 ou 90 % de la production théorique calculée
- Dédommagement du Maitre d'Ouvrage si la production est inférieure à la production garantie

Chauffe-eau solaire : pourquoi la GRS ?

- œ Liten
- Garantie le maitre d'ouvrage sur les performances
- Sensibilise tous les acteurs de la chaine (ingénieurie, fabricant, installateurs, maintenance)

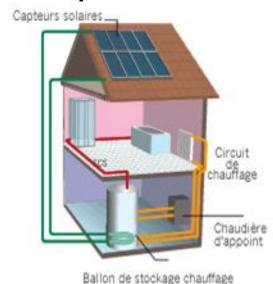

Chauffage solaire

Le chauffage solaire ou Systèmes Solaires Combinés (SSC)

Les contraintes

- > Chauffer le bâtiment quand il fait froid
- > Éviter les surchauffes estivales en été lorsqu'il y a peu de besoins

Chauffage solaire: 2 principes principaux


Hydroaccumulation

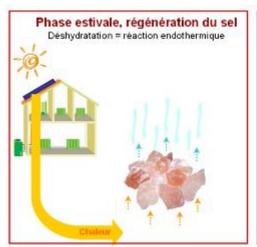
- > On stocke l'énergie solaire au fur et à mesure qu'elle arrive dans un ballon de stockage (de 0.5 à 1 m3)
- > On utilise cette énergie stockée lorsqu'on en a besoin soit pour le chauffage, soit pour l'ECS

PSD

- > On stocke l'énergie solaire dans la dalle en béton en veillant à ne pas surchauffer
- > La dalle restitue au fur et à mesure du temps

Chauffage solaire

- En Europe,
 - > Marché dans le neuf sans doute limité à l'avenir
 - > Marché dans l'existant : incontournable dans le cadre d'un bouquet de travaux « isolation » et « systèmes »
 - > De plus en plus de systèmes préfabriqués
 - Simplicité de pose pour réduire les erreurs de montage et les coûts d'installation
 - Intégration du générateur d'appoint

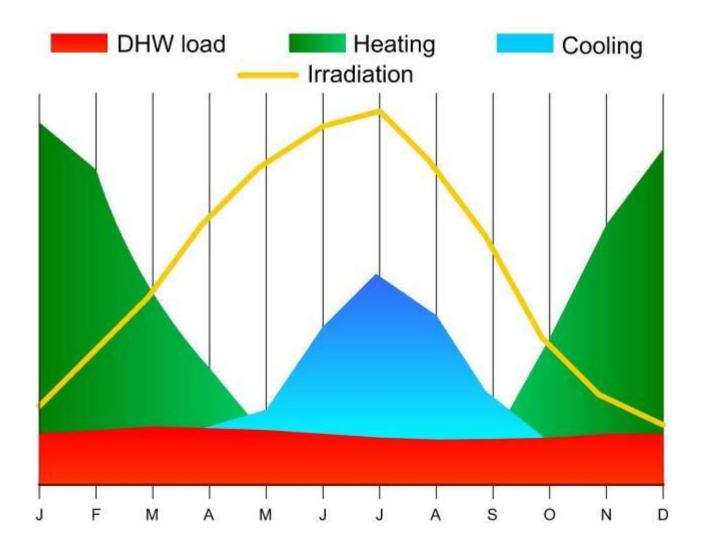

Chauffage solaire : des maisons 100% solaire

Stockage intersaisonnier : Grande cuve d'eau

- Stockage intersaisonnier : Stockage thermochimique
 - En phase de R&D

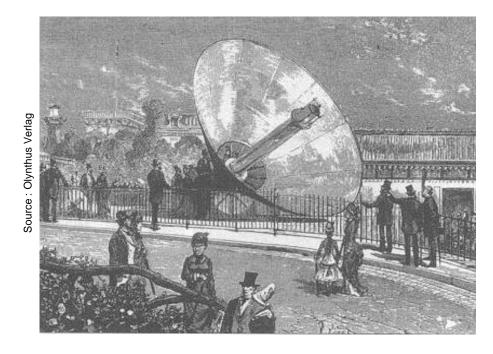
Chauffage solaire : réseau de chaleur

- Développement du couplage du solaire dans les réseaux dans le Nord de l'Europe et Canada
- Braedstrup (Danemark) :
 - > 8000 m² de capteur avec une production centralisée
 - > Stockage (Eau): 2000m3, soit 110MWh
- Drake Landing Solar Community (Canada)
 - > 2300 m² de capteur avec une production centralisée
 - > Stockage : 240 m3 en eau (court terme) et 144 forage de 37 m (long terme)



Climatisation solaire Rafraichissement solaire

Une adéquation ressource - besoins



Il y a bien longtemps ...

29 septembre 1878, Exposition Universelle de Paris

 Sur le Trocadéro, Augustin MOUCHOT fabrique le premier bloc de glace en utilisant l'énergie solaire via :

Un capteur solaire à concentration d'environ 4 m de diamètre avec un absorbeur de 92 litres

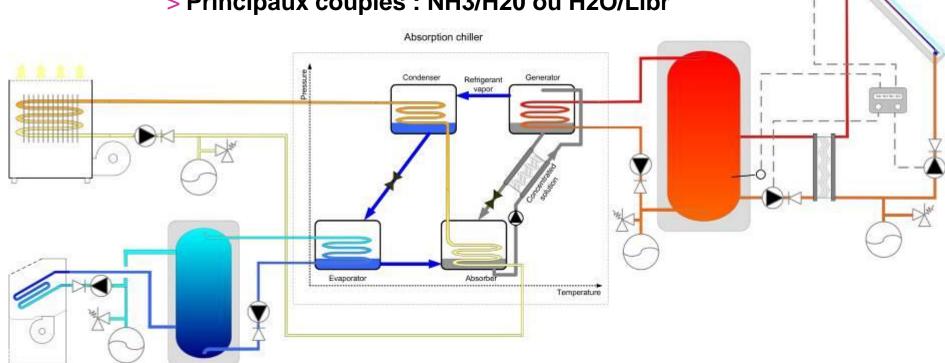
Une machine à absorption acide sulfurique / eau conçue par Edmond CARRÉ

Le jury lui décernera la médaille d'or.

Aujourd'hui, trois grandes familles de process de climatisation solaire

- En utilisant le vecteur eau pour la climatisation
 - > Absorption
 - > Adsorption
- En utilisant le vecteur air
 - > Dessicant cooling

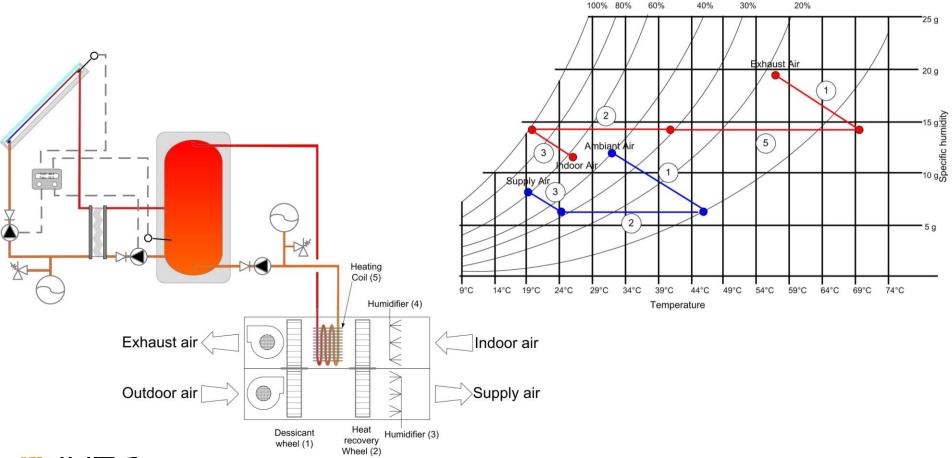
Logistics Centre for 2008 Summer Olympic Games in Qingdao, China (source : Solid)


Solar cooling for a training centre Phoenix, Arizona (source : Solid)

Le principe de fonctionnement : Absorption

liten

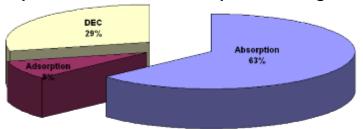
- Absorption : vecteur eau
- Machine à absorption
 - > Comme une PAC
 - > Sauf que la compression mécanique est remplacée par une compression thermique
 - > Principaux couples : NH3/H20 ou H2O/Libr



Le principe de fonctionnement : Dessicant cooling

Vecteur air

- > Transformation des propriétés de l'air en travaillant sur le diagramme de l'air humide
- > Roue dessicante (phénomène adsorption)


INSTITUT NATIONAL DE L'ENERGIE SOLAIRE

Climatisation solaire : le marché

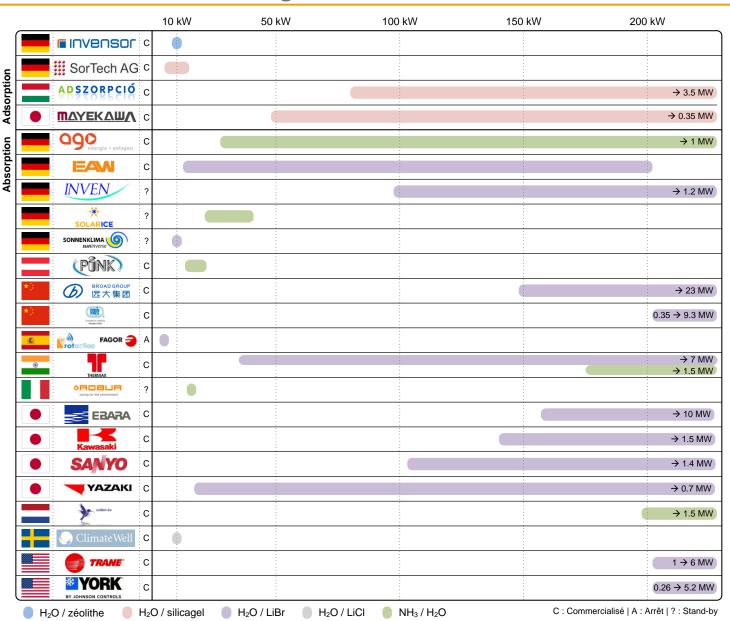
- Marché en développement
 - > Quelques centaines d'installation dans le monde

Répartition des installations par technologies

> Une large gamme de puissance

- De quelques kW à 1.5 MW

1400 m² solar collector 750 kW cooling power Qatar

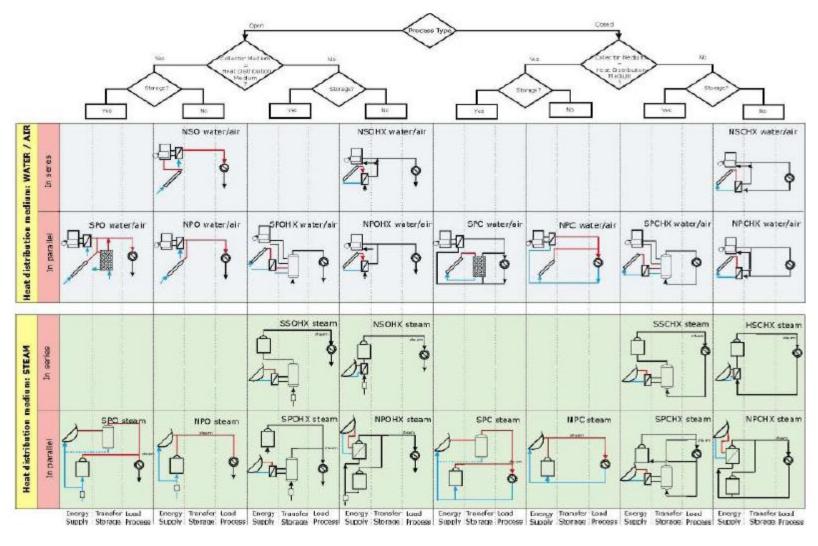


3900 m² solar collector 1500 kW cooling power United World College (UWC) in Singapore

Climatisation solaire : gamme de machine

Eau chaude de process industriel

Industrie


Les principaux secteurs industriels et les niveaux de température associés

Secteur industriel	Process	Niveau température
	Séchage	30 - 90
	Lavage	40 - 80
Agro-alimentaire	Pasteurisation	80 - 110
Agi 0-aiiiiieiitaii e	Ebulition	95 - 105
	Stérilisation	140 - 150
	Traitement thermique	40 - 60
	Lavage	40 - 80
Industrie Textile	Blanchiment	60 - 100
	Teinture	100 - 160
	Ebulition	95 - 105
Industrie chimique	Distillation	110 - 300
	Procédés chimiques diverses	120 - 180
Tour coctours	Préchauffage des retours chaudière	30 - 100
Tous secteurs	Chauffage des halls industriels	30 - 80

Industrie : une multiplicité de possibilités

Une méthodologie

- Analyse du process industriel
 - > Besoins énergétiques selon les niveaux de température
 - > Rejets thermiques
- Recherche des économies d'énergie possible
 - > Utilisation des rejets thermiques
- Intégration de la production solaire dans le process
 - > Au plus bas niveau de température possible
 - > Sélection et dimensionnements des équipements

- Entreprise fabriquant des équipements de cerclage et d'emballage papier
- République tchèque
- Solaire utilisé pour préchauffer un bain de traitement chimique des métaux

Source: Projet So-Pro

- Entreprise FASA : entreprise du secteur automobile
- Espagne
- Solaire utilisé pour le nettoyage de pièces métalliques avant soudage

Source: Projet So-Pro

Domaine NEFERIS : production viticole

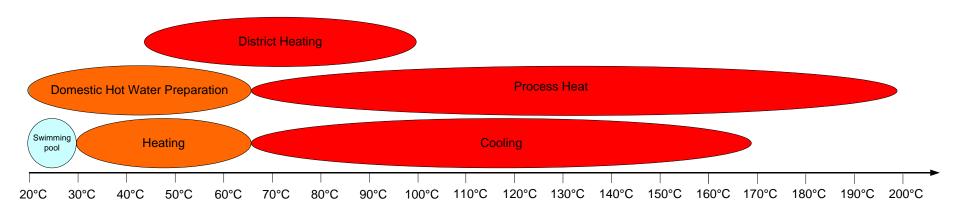
Tunisie

Liten · Le solaire est utilisée pour faire du froid négatif avec une machine à absorption

Source: Projet Medisco

43 20 avril 2012

- Entreprise pharmaceutique
- Egypt
- Le solaire produit de la vapeur saturée à 170°C / 7.5 bars utilisée dans le process industriel



liten

Les différents types de capteurs solaires

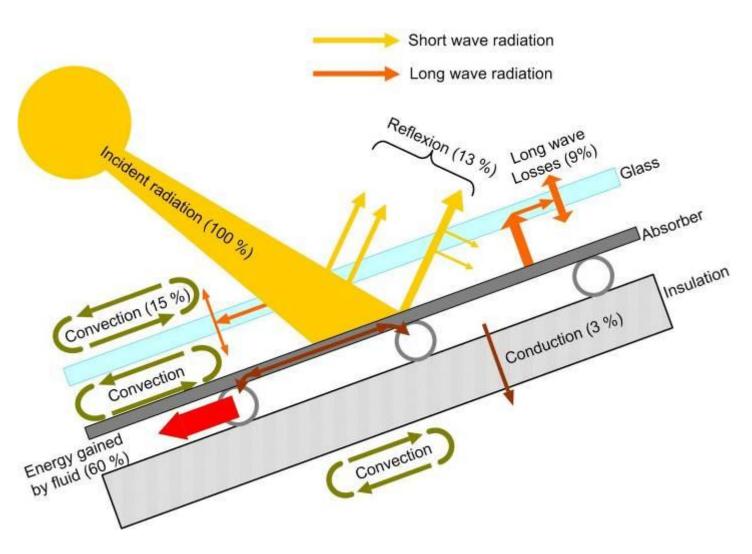
Les applications par gamme de température

Le principe du capteur solaire

 Absorption par une surface noire

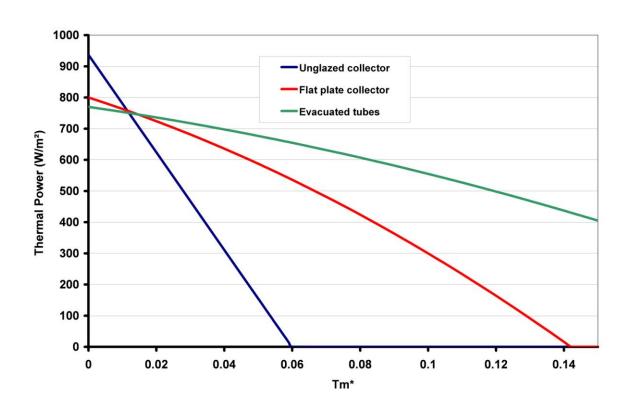
 Isolation pour limiter les pertes thermiques

Effet de serre par le vitrage



⁵ 20 avril 2012 47

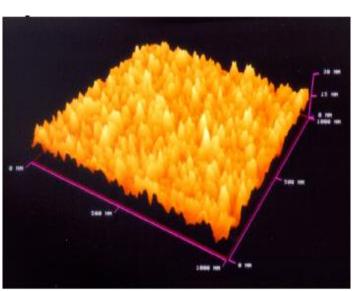
Le bilan thermique simplifié du capteur

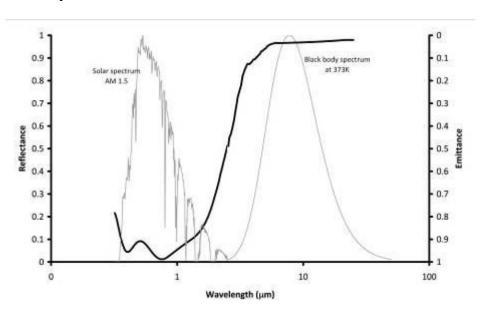

Le bilan thermique d'un capteur

Expression du rendement d'un capteur

$$\eta = \frac{Q_u}{A_c G} = \eta_0 - a_1 \frac{T_m - T_a}{G} - a_2 G \left(\frac{T_m - T_a}{G}\right)^2$$

$$\eta = \eta_0 - a_1 T_m^* - a_2 G(T_m^*)^2$$





Les traitements sélectifs

- Traitement de surface appliquée sur l'absorbeur
- Objectif: limiter les pertes thermiques par infrarouge
 - $> \alpha_s$: absorption pour le rayonnement solaire : entre 0.90 et 0.95
 - > ε_t : émissivité pour le rayonnement thermique : entre 0.05 et 0.15
- Les grandes familles de traitement sélectif
 - > Le chrome noir
 - > Les dépôts sous vide (PVD, CVD)

Différentes technologies de capteurs

- Capteurs sans vitrage
 - > Polymère
 - > Métallique

- Capteurs plans vitrés
 - > Simple ou double vitrage
 - > Sélectif / non sélectif
 - > Sous vide
- Capteurs à tubes sous vides
 - > A circulation directe
 - > A caloduc
 - > Simple tube / Double tube
- Capteurs à faible concentration sans tracking
 - > Capteur CPC
- Capteurs à concentration avec tracking
 - > Capteurs à miroir de Fresnel
 - > Capteurs cylindro-paraboliques

Température

Les différentes typologies de capteur : Capteur sans vitrage

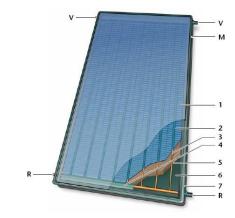
Capteur solaire en matériau polymère

Capteur tôle

liten

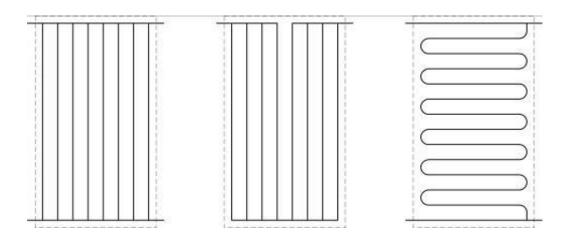
 Energie Solaire SA (acier inoxydable avec revêtement sélectif)

Capteur perforé à air



Les différentes typologies de capteur : Capteur plan

- Variante « Face Avant »
 - > Capteur rempli de gaz rare
 - > Capteur sous vide
 - Capteur avec double couverture transparente (double vitrage ou film téflon

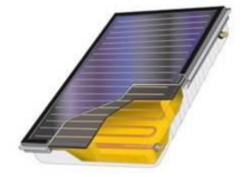

- Variante « Hydraulique » :
 - > Influence du débit

- HighFlow: 40 à 50 l/h.m²

- MicroFlow: 12 à 15 l/h.m2

MatchFlow : débit variable

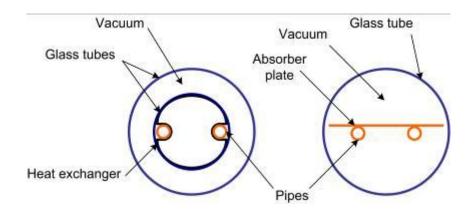
- > Le montage hydraulique du champ de capteurs
 - Série
 - Parallèle


⁵ 20 avril 2012 53

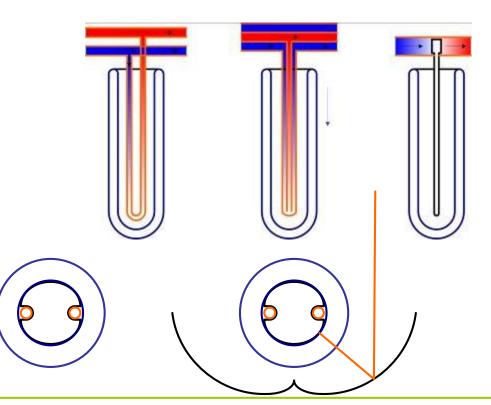
Les différentes typologies de capteur : Capteur plan

Des points clés

- > La ventilation
- > Le comportement en stagnation
- > Le vieillissement du aux UV
- > Traitement sélectif



Les différentes typologies de capteur : Capteur à tubes



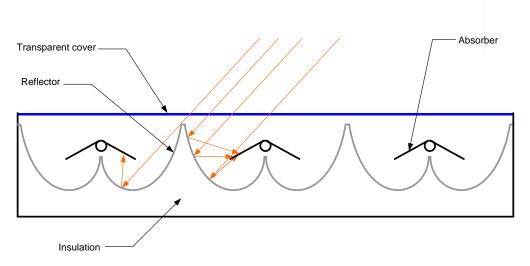
- De nombreuses variantes
 - > Enveloppe de verre
 - Une seule enveloppe
 - Double enveloppe (tubes « Sydney »)

- > Transfert thermique
 - Caloduc
 - Circulation direct

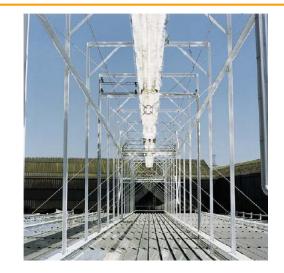
> Réflecteur

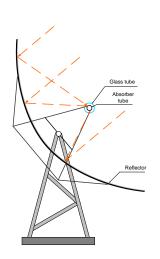
Les différentes typologies de capteur : Capteur à tubes

- Des points clés
 - > Tenue au vide
 - > Tenue aux chocs
 - > Transfert thermique
 - > Traitement sélectif



Les différentes typologies de capteur : Capteur à concentration

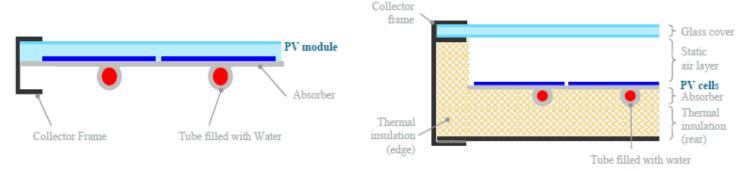

- Capteur stationnaire
 - > Sans dispositif de tracking
 - > Faible niveau de concentration



Les différentes typologies de capteur : Capteur à concentration

- Capteurs avec tracking 1 axe
 - > Facteur de concentration : jusqu'à 50x

DE L'ENERGIE SOLAIRE 20 avril 2012

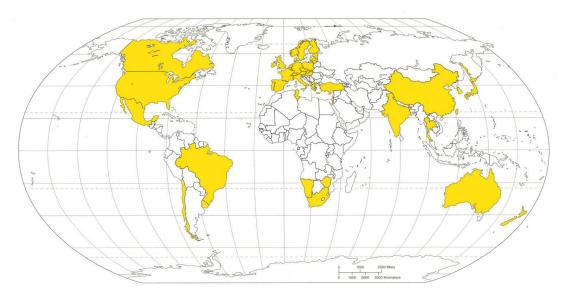

Les différentes typologies de capteur : Capteur plan PVT

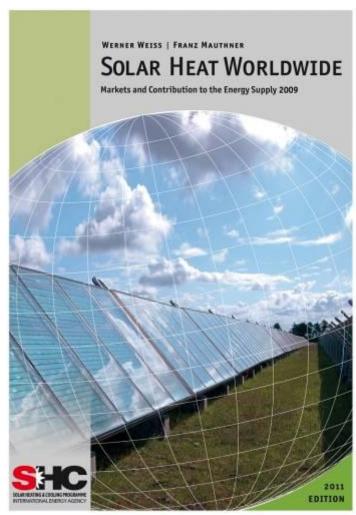
Objectif:

> Valoriser au mieux la ressource solaire en produisant à la fois de l'énergie thermique et de l'énergie électrique

- Fausse bonne idée ?
 - > Thermique : Faire de l'eau chaude
 - > PV : Baisser le niveau de température des cellules PV pour augmenter le rendement électrique
 - > Des applications pertinentes, mais marché sans doute limité

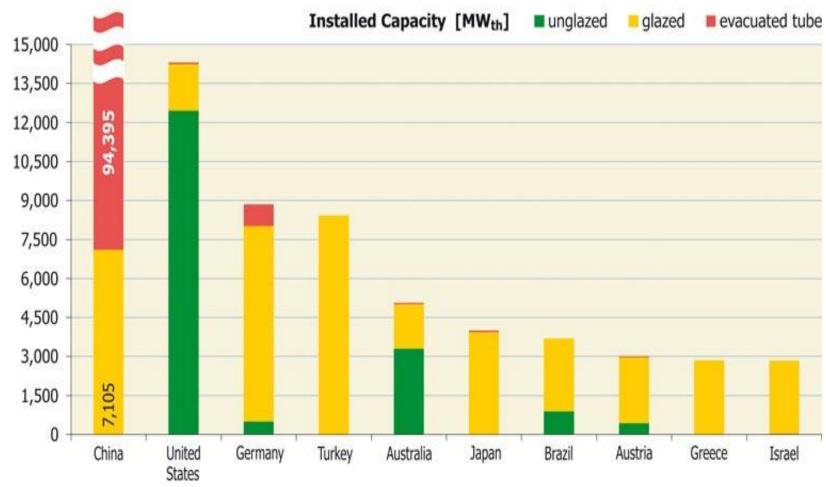
Source: Fraunhofer ISE




Le marché dans le monde

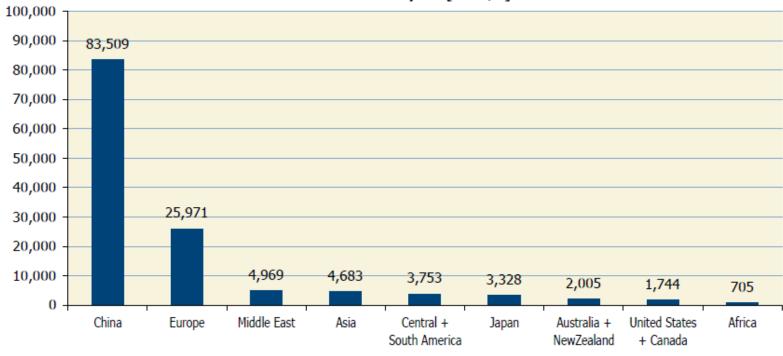
Solaire thermique : le marché dans le monde

- 53 pays inclus
- 4 milliard d'habitants représentés
- 111en · 90-95% du marché solaire thermique



Solaire thermique : capacité installée

A la fin de l'année 2010, la capacité installée était de 196
 GWth, correspondant à 280 millions de mètre carré



Solaire thermique : Evaluation de la production solaire

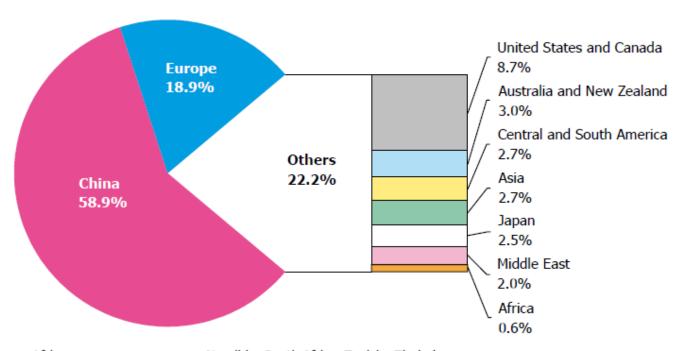
liten

Collector yield [GWh/a]

Africa: Asia: Namibia, South Africa, Tunisia, Zimbabwe India, South Korea, Taiwan, Thailand Europe:

EU 27, Albania, Former Yugoslav Republic of Macedonia, Norway, Switzerland, Turkey

Central +


South America: Barbados, Brazil, Chile, Mexico, Uruquay

Middle East: Israel, Jordan

Solaire thermique : Répartition géographique

Africa: Namibia, South Africa, Tunisia, Zimbabwe

Asia: India, South Korea, Taiwan, Thailand
Central + South America: Barbados, Brazil, Chile, Mexico, Uruguay

Europe: EU 27, Albania, Former Yugoslav Republic of Macedonia, Norway, Switzerland, Turkey

Middle East: Israel, Jordan

Solaire thermique : capacité installée per capita

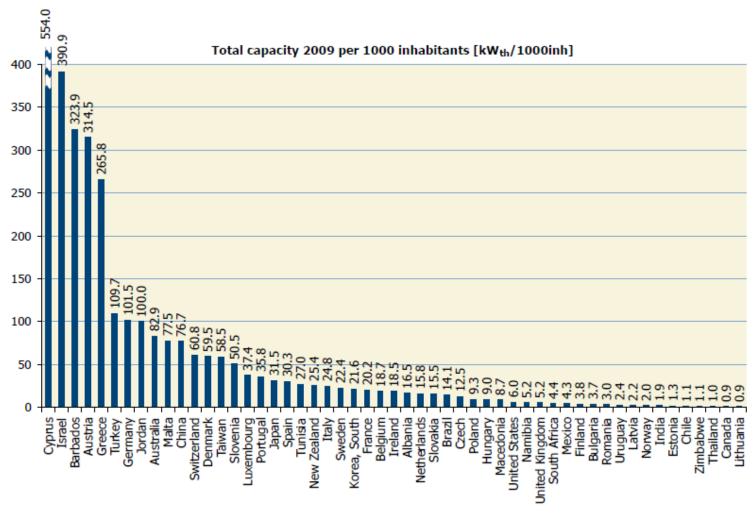
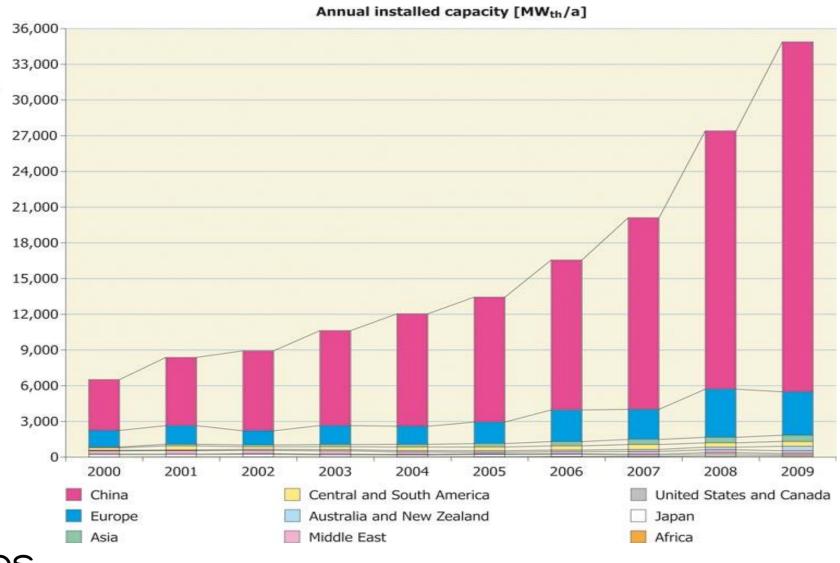
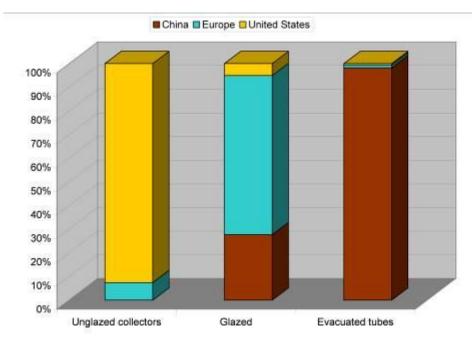
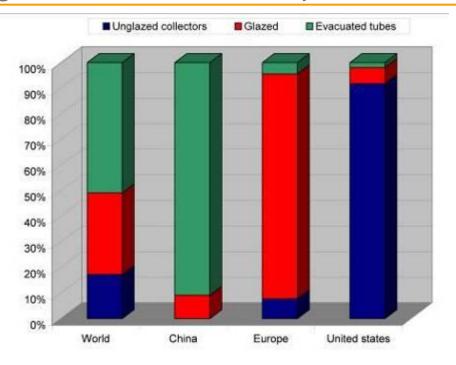
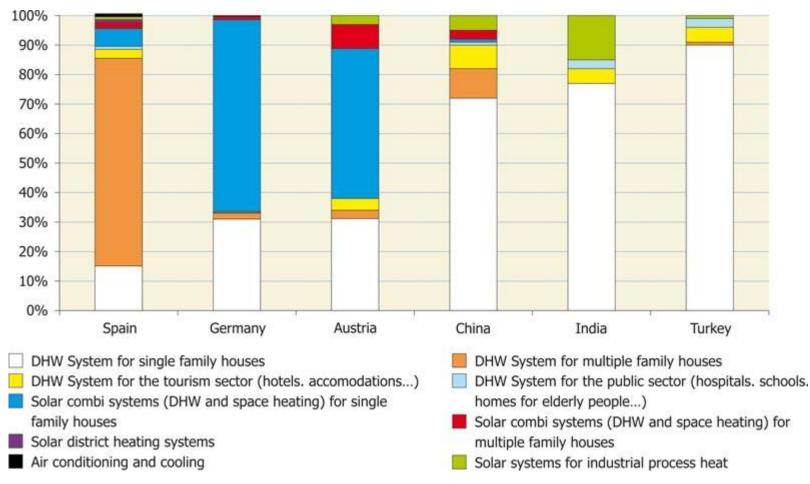



Figure 7: Total capacity of glazed flat-plate and evacuated tube collectors in operation in kW_{th}
per 1,000 inhabitants by the end of 2009


Solaire thermique : Evolution du marché

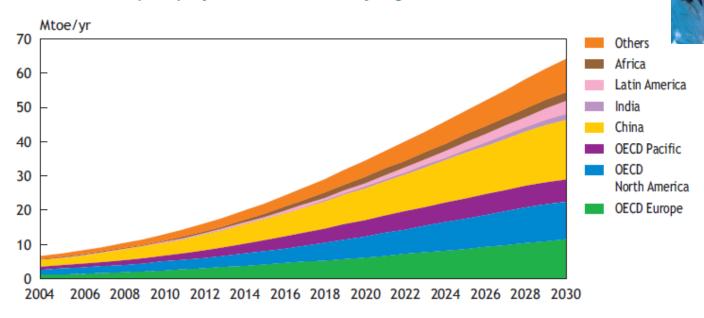


Solaire thermique : Typologie du marché des capteurs



Solaire thermique : Typologie du marché des systèmes

Relatif aux nouvelles installations réalisées en 2009



Solaire thermique : Perspectives

- Renewables for heating and cooling (2007)
- Solar Thermal Roadmap (parution en Juillet 2012)

Figure 26 • Deployment of solar thermal collectors in terms of energy outputs projected out to 2030 by region

Source: IEA, 2006f. 1Mtoe = 42 PJ.

20 avril 2012 69

RENEWABLES

FOR HEATING AND COOLING

RETD

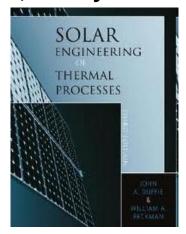
Quelques références : Agence Internationale de l'Energie

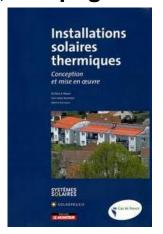
Programme Solar Heating and Cooling

- > www.iea-shc.org
- > Tâches en cours
 - Task 39: Polymeric materials for solar thermal applications
 - Task 40:Towards net zero energy buildings
 - Task 41: Solar energey and architecture
 - Task 42: Compact thermal energy storage
 - Task 43: Rating and certification procedures
 - Task 44: Solar and heat pumps systems
 - Task 45: Large systems; large solar heating and cooling, seasonal storage, heat pumps
 - Task 46: Solar ressource assessment and forecasting
 - Task 47: Solar renovation of non-residential buildings
 - Task 48: Quality Assurance and Support Measures for Solar Cooling
 - Task 49: Solar Process Heat for Production and Advanced Applications

> Publications

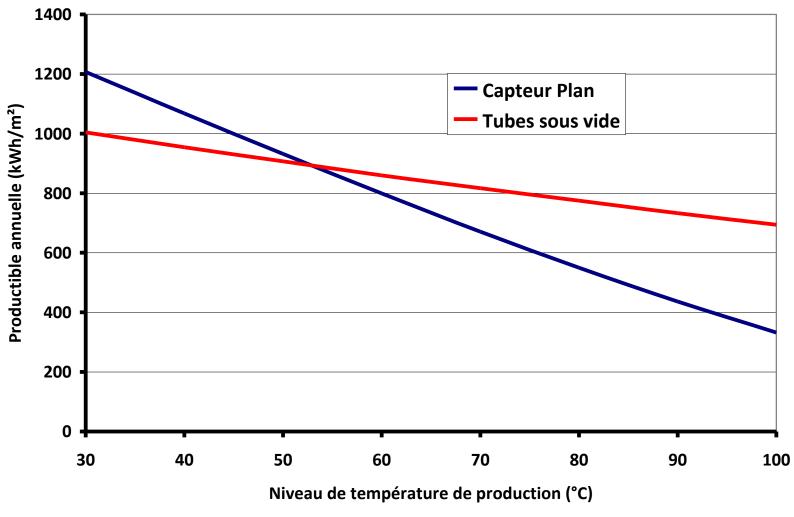
- Solar Heat Worldwide : Markets and Contribution to the Energy Supply 2009 : marché du solaire thermique dans le monde.
- Solar Thermal Roadmap : sera publiée en juillet 2012 lors du congrès SHC 2012 à San Francisco





Quelques références :

- www.solarthermalworld.org
 - > Sites d'information sur la filière solaire thermique
 - > Monde, Economique, Technique, ...
- Ouvrages techniques de référence
 - John A. Duffie, William A. Beckman, "Solar Engineering of Thermal Processes, Third Edition", John Wiley & Sons, 2006, 928 p.
 - Peuser, F.A., Remmers, K-H., Schnauss, M.,
 « Installations Solaires thermiques, Conception et mise en œuvre », Ed. Systèmes Solaires, 206, 403 pages



⁵ 20 avril 2012 71

Potentiel d'un capteur solaire à Oujda

Climat de Casablanca

Quelques éléments à prendre en compte dans une Roadmap

Applications

- > Sélection d'applications pertinentes
 - Partir des besoins de chaleur/climatisation (énergie finale) dans les différents secteurs (résidentiel, tertiaire, agriculture, industrie)
- > Choix des priorités technico-économiques
 - Petits systèmes ⇔ grandes installations
 - Standardisation ⇔ équipements unitaires
 - Résidentiel/Tertiaire ⇔ Industrie
- > Mise en place des dispositifs d'accompagnement
 - Technique
 - Financier
 - Réglementaire

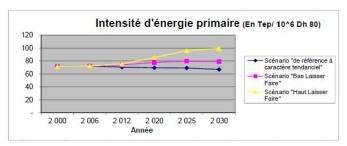
Qualité

- > Produits
 - Durabilité, coût, adaptation au besoin, industrie locale
- Ingénierie
 - Analyse précise des besoins
 - Dimensionnement adapté
 - Simplicité, robustesse
- > Installation
 - Qualité de mise en œuvre, notamment isolation
- > Suivi Maintenance
 - Indicateurs de bon fonctionnement

Source

Royaume du Maroc Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement

Département de l'Energie et des Mines



المملكة المغربية

وزارة الطاقة والمعادن والساء والبينة قطاع الطاقة والمعادن ———

Direction de l'Observation et de la Programmation

Analyse prospective de la demande d'énergie à l'horizon 2030

Octobre 2011

Page 1

- Le bâtiment : 36% de la consommation énergétique finale
 - > 29% au niveau résidentiel
 - > 7% au niveau du tertiaire.
- L'industrie : 29% de l'énergie finale
- Secteur agricole : 6% de la consommation énergétique

75 20 avril 2012

Consommation d'énergie finale par secteur : Résidentiel

Demande d'énergie finale par usage:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
cuisson	2 938	3 559	4 118	6 509	2,7
Eau chaude sanitaire	422	500	565	910	2,6
Chauffage	453	473	545	900	2,3
Eclairage	234	239	268	417	1,9
Electricité spécifique	190	315	491	941	5,5
TOTAL	4 214	5 086	5 987	9 676	2,8

Demande d'énergie finale par forme:

Scénario économique "Bas Maitrise d'énergie":

	(En 1000 Tep)				2030/2000
	2000	2012	2020	2030	(En %)
Electricite	344	608	933	1 487	5,0
Butane	1 177	2 248	3 284	6 890	6,1
Charbon de bois	143	130	120	100	-1,2
Energies traditionnelles	2 550	2 100	1 650	1 200	-2,5
TOTAL	4 214	5 086	5 987	9 676	2,8
Gas oil	16	23	58	84	
TOTAL GLOBAL	4 230	5 109	6 045	9 761	

Consommation d'énergie finale par secteur : Industrie

Scénario économique "Bas Maitrise d'énergie":

Demande de combustibles:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
IGCE:					
Sucre	170	172	176	232	1,0
Ciment	486	530	531	687	1,2
Papier	38	30	31	37	-0,1
Pate à papier	28	29	30	32	0,4
Phosphates	228	242	250	346	1,4
Acide+engrais	51	62	68	96	2,1
Total IGCE	1 001	1 067	1 087	1 429	1,2

IL:	<u> </u>			
IAA	7	15	16	18
TC	74	86	108	140
AMC+BTP	230	257	257	337
CP	12	14	15	23
IMME	60	79	83	146
MINES +Divers	23	28	31	40
Total IL	406	479	511	704
Total industrie	1 407	2 109	2 163	1 810

IGCE: Industrie Grosse Consommatrice d'Energie

IL: Industrie Légère

IAA: Industrie Agro-Alimentaire

TC: Textile et Cuir

AMC : Matériau de Construction CP : Chimiques et Para-chimiques

IMME : industries mécaniques, métalliques et électroniques

Consommation d'énergie finale

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR AGRICOLE

Scénario économique "Bas Maitrise d'énergie":

	(1 000 Tep)				2030/2000 (En %)
	2000	2010	2020	2030	0,0
Gas oil	731	1 213	1 891	2 573	4,3
Electricité	55	118	217	424	7,0
Total	786	1 331	2 108	2 997	4,6

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR TERTIAIRE

Scénario économique "Bas Maitrise d'énergie":

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
Propane	18	74	83	110	6,2
Gas oil	314	435	768	1 123	4,3
Fuel oil	25	ı	1	1	-
Energies traditionnelles	460	380	320	250	-2,0
Electricité	191	376	540	1 064	5,9
Total Tertiaire	1 009	1 265	1 711	2 546	3,1

