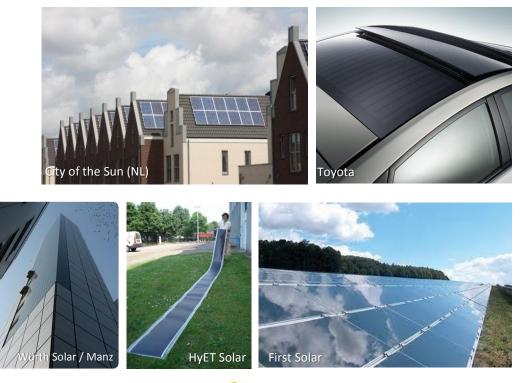
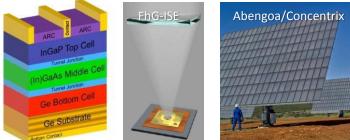


Cost-effective high-efficiency 1-sun PV modules


Wim Sinke ECN Solar Energy


IEA PV Roadmap Workshop Paris 04 02 2014

www.ecn.nl

Cell & module technologies *Commercial*

1 sun: wafer-based silicon (≈90%)

- monocrystalline
- multicrystalline & quasi mono Module efficiencies 14 ~ 22%

1 sun : thin films (≈10%)

- cadmium telluride (CdTe)
- copper-indium/gallium-diselenide/sulphide (CIGSS)
- silicon

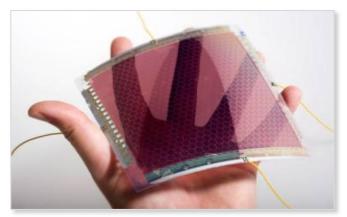
Module efficiencies $7\sim 14\%$

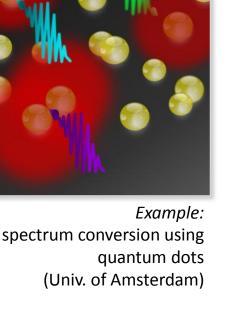
Concentrator (<1%)

- multi-junction III-V semiconductors
- silicon

Module efficiencies 25 ~ 33%

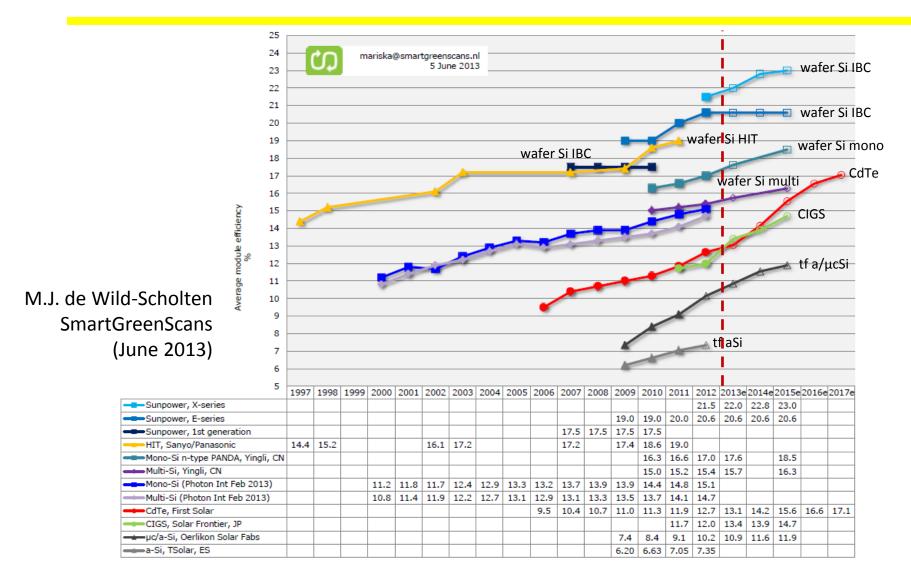
Concepts & technologies *Secondary ECN* Lab and pilot production ("nanotechnology at km² scale")

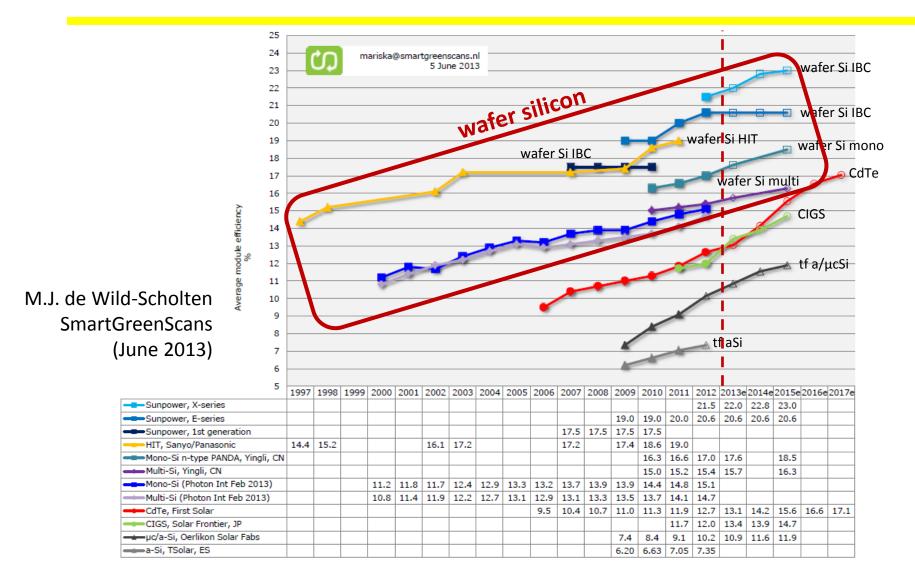

super-high-efficiency concepts

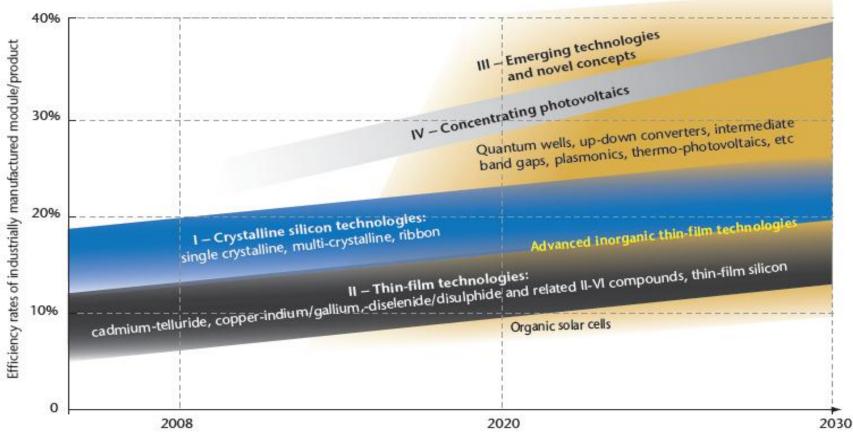

(incl. combinations of existing technologies)

- more complete use of solar spectrum (optimize cell or modify spectrum)
- advanced light management (incl. macro- and micro-concentration)

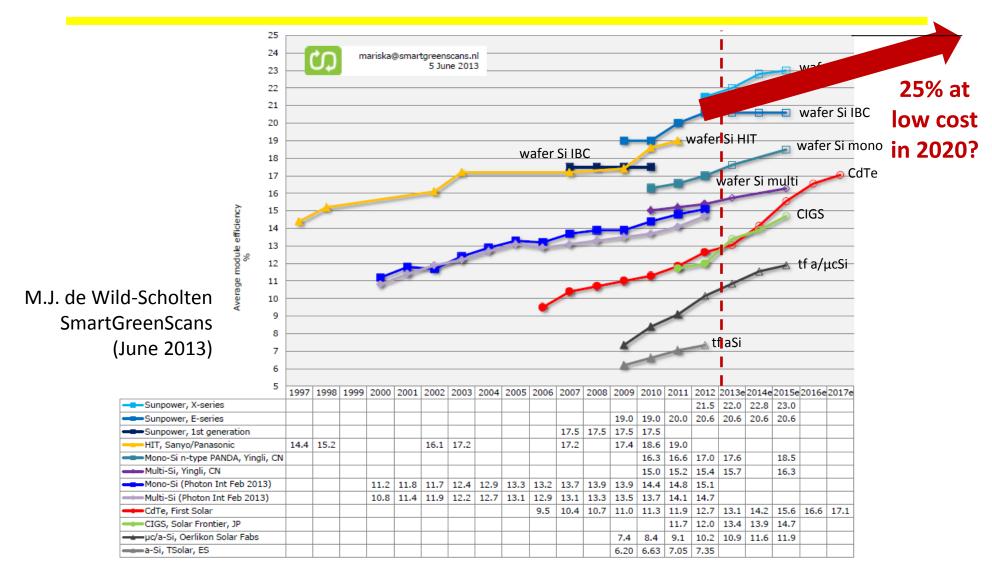
super-low-cost concepts


(& technologies for new applications)




Commercial module efficiencies (selection) **ECN** *History* + *short-term projections* (*announced*)

Commercial module efficiencies (selection) **ECN** *History* + *short-term projections* (*announced*)



Commercial module efficiencies *ECN History* + *long-term projections* (*simplified estimates*)

Source: IEA PVPS.

Commercial module efficiencies (selection) **ECN** *History* + *short-term projections* (*announced*)

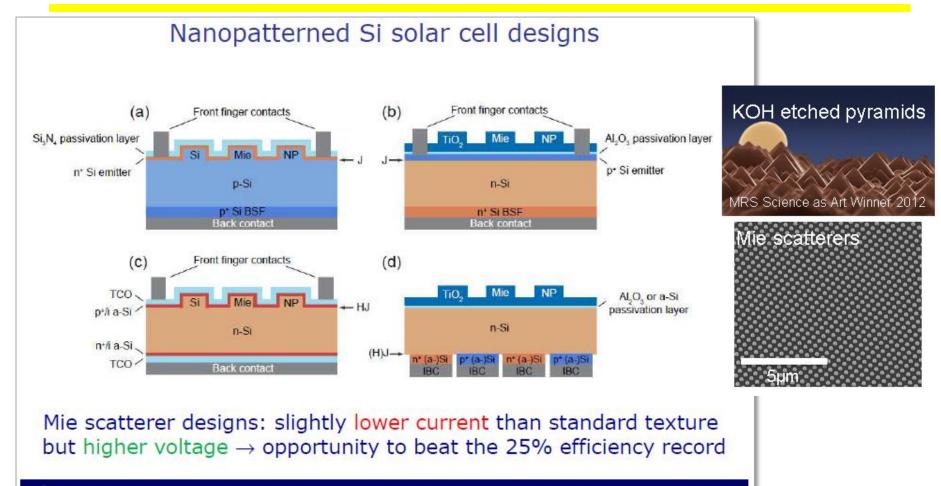
Towards and beyond 25% 1-sun *∅* **ECN** module efficiency at competitive cost

- Bring wafer-silicon technology to perfection (to 25%) ST/MT
 - reduce process complexity and cost of current high-end technologies
 - combine key features of current high-end technologies (e.g. rear hetero-junction, rear contact)
 - use ultra-thin wafers + advanced light management
- Combine the best of two worlds (beyond 25%) MT
 - high-efficiency wafer-silicon + wide-gap thin-film technology (2- or 4-terminal onesun tandem)
- Novel routes (to and beyond 25%) MT/LT
 - high-efficiency wafer-silicon + spectrum converters
 - other multi-gap approaches (bulk, quantum dots, nanowires, etc.)
 - other high-efficiency approaches (multi carrier, hot carrier, intermediate band, etc.)

Wafer-based silicon technologies: *a variety of options (selection)*

Conductivity type	Crystal type	Contact geometry	Junction geometry	Junction type	Light collection	Identity	
P-type N-type	Multi	Front & rear	Front	Homo	Front	Today's workhorse: monofacial	
					Front & rear	Today's workhorse: bifacial version	
	Quasi-mono Mono			Hetero	Front	UIT / UIT (today's high and)	
					Front & rear	HJT / HIT (today's high end)	
			Rear			-	
		Rear	Front	Homo	Front	Metal Wrap-Through (MWT) (emerging)	
					Front & rear		
				Hetero	Front	HJ-MWT (novel)	
					Front & rear		
			Rear	Homo	Front	Interdigitated Back Contact (IBC) (today's high end)	
					Front & rear		
				Hetero	Front	HJ-IBC (novel)	
					Front & rear	-	

Example: combine strengths of current high-end silicon technologies


Current Best Si Cells									
Maker (notes)	Efficiency	V₀₀ (mV)	J _{sc} (mA/cm²)	FF	Source				
Sanyo (HIT, 98 µm)	24.7%	750	39.6	83.2%	39 th IEEE PVSC (2013).				
UNSW (diffused, 300 µm)	25.0%	706	42.7	82.8%	Zhou <i>, et. al.</i> APL 73, (1998).				
Best of:	26.6%	750	42 .7	83.2%					
Maintain high V_{oc} and J_{sc}									

Bonna Newman - AMOLF (Dec. 2013)

10

6

Advanced light management for high efficiency silicon cells

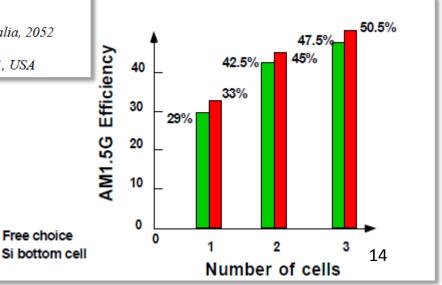
FOM Institute

Piero Spinelli, Bonna Newman

ECN

Towards and beyond 25% 1-sun *∅* **ECN** module efficiency at competitive cost

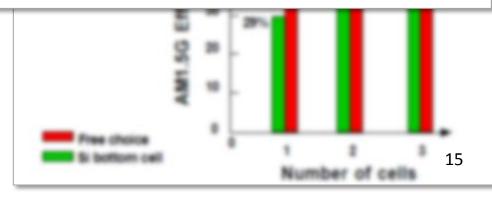
- Bring wafer-silicon technology to perfection (to 25%) ST/MT
 - reduce process complexity and cost of current high-end technologies
 - combine key features of current high-end technologies (e.g. rear hetero-junction, rear contact)
 - use ultra-thin wafers + advanced light management
- Combine the best of two worlds (beyond 25%) MT
 - high-efficiency wafer-silicon + wide-gap thin-film technology (2- or 4-terminal onesun tandem)
- Novel routes (to and beyond 25%) MT/LT
 - high-efficiency wafer-silicon + spectrum converters
 - other multi-gap approaches (bulk, quantum dots, nanowires, etc.)
 - other high-efficiency approaches (multi carrier, hot carrier, intermediate band, etc.)

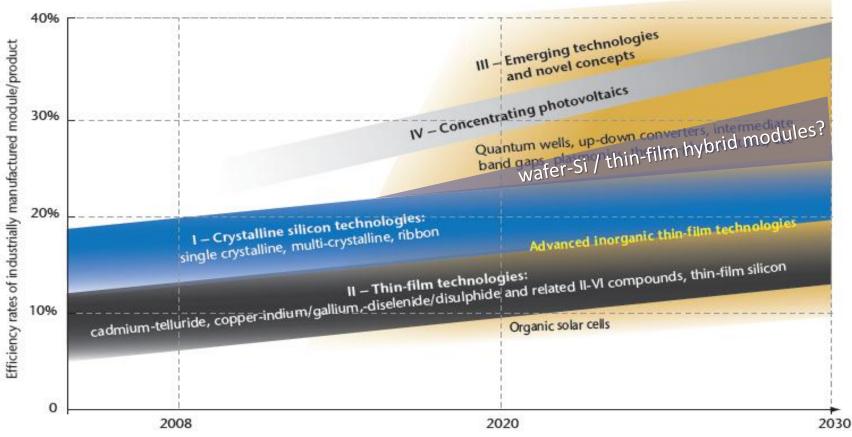

Silicon wafer based tandems

28th European Photovoltaic Solar Energy Conference and Exhibition

SILICON WAFER-BASED TANDEM CELLS: THE ULTIMATE PHOTOVOLTAIC SOLUTION?

Martin A. Green¹ (Phone: +(61-2) 9385-4018; Fax: +(61-2) 9662-4240; Email: m.green@unsw.edu.au) Xiaojing Hao¹; Stephen Brenner¹; Gavin Conibeer¹; Ibraheem Al Mansouri¹; Ning Song¹; Ziheng Liu¹; Steven A. Ringel²; J.A. Carlin²; T.J. Grassman²; B. Galiana²; A.M. Carlin²; C. Ratcliff²; D. Chmielewski²; L. Yang²; M.J. Mills²; Glenn Teeter³; Matthew Young³

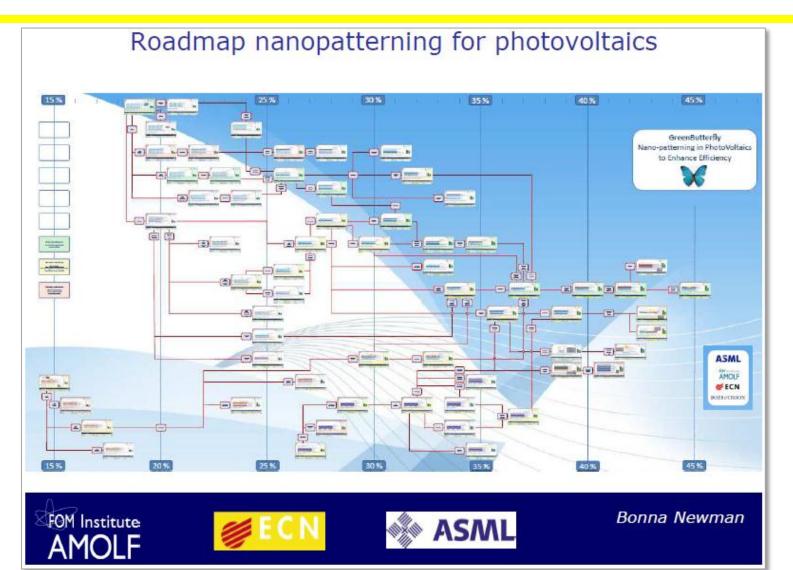

¹Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney, Australia, 2052 ²Ohio State University, 2015 Neil Avenue, Columbus, OH 43210-1272, USA ³National Renewable Energy Laboratory, 15013 Denver West, Parkway, Golden, CO 80401, USA



Silicon wafer based tandems

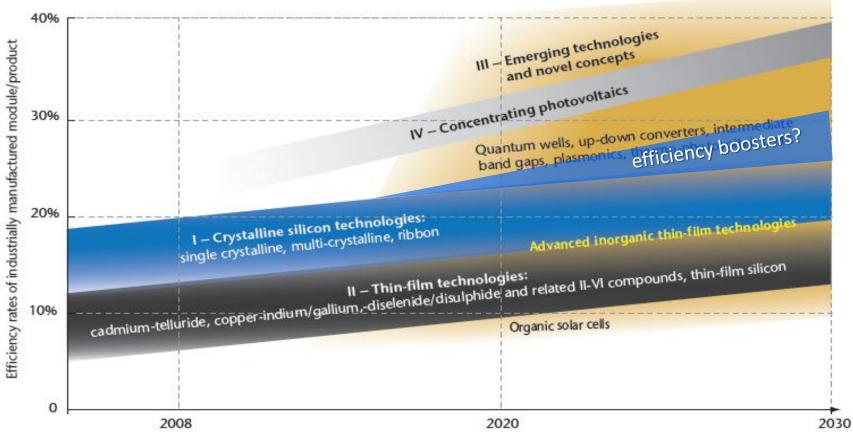
ABSTRACT: On-going price reductions with wafer-based cells is making silicon technology increasing difficult to dislodge. With market leaders expected to be manufacturing modules above 16% efficiency at \$0.36/Watt by 2017, even the cost per unit area (\$60-\$70/m²) will be difficult for thin-film technologies to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry but with an appreciably higher than present efficiency might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si wafers recently approaching \$1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of Si-based tandem approaches are reviewed together with recent results and ultimate prospects.

Commercial module efficiencies *#ECN <i>History* + *long-term projections* (*simplified estimates*)



Source: IEA PVPS.

Towards and beyond 25% 1-sun *∅* **ECN** module efficiency at competitive cost


- Bring wafer-silicon technology to perfection (to 25%) ST/MT
 - reduce process complexity and cost of current high-end technologies
 - combine key features of current high-end technologies (e.g. rear hetero-junction, rear contact)
 - use ultra-thin wafers + advanced light management
- Combine the best of two worlds (beyond 25%) MT
 - high-efficiency wafer-silicon + wide-gap thin-film technology (2- or 4-terminal onesun tandem)
- Novel routes (to and beyond 25%) MT/LT
 - high-efficiency wafer-silicon + spectrum converters
 - other multi-gap approaches (bulk, quantum dots, nanowires, etc.)
 - other high-efficiency approaches (multi carrier, hot carrier, intermediate band, etc.)

Nanotechnology for high-efficiency PV: *ECN finding the way in a jungle of options*

Commercial module efficiencies *#ECN <i>History* + *long-term projections* (*simplified estimates*)

Source: IEA PVPS.

Summary for discussion

- Compared to IEA PV Roadmap 2010:
 - wafer-based silicon technologies offer more possibilities for continued improvement
 - development and market introduction of "disruptive" technologies (even) tougher than expected – they are longterm options
 - the "end game" is between technologies with module efficiencies 25-50% and manufacturing costs 0.25-0.5 \$/Wp, allowing system prices (incl. sustainable margins) well below 1 \$/Wp

City of the Sun, Municipality Heerhugowaard, NL (photo Kuiper Compagnons)