Unconventional Non Imaging Optics

by

Manuel Collares Pereira

What for?

- To achieve the highest concentration
- To achieve the highest transmission efficiency
- The need to consider "etendue" conservation (matching)
- "etendue": a geometrical quantity, is the product of area*angular room occupied and traversed by the optical rays (solar radiation)

Conservation of "Etendue"

Etendue through AB (from three identical flashlights) with an angular spread α associated ...

...is the same as ...

... Etendue (same three flashlights!) through the smaller area CD but now with a larger angular spread β

Cateara des Energias Renováveis

Maximal Concentration?

• The problem is: given radiation incident on an aperture **a** within a certain angular range $(\pm \theta)$, how much can it be concentrated- Cmax?

 Conservation of "Etendue" applied to the problem of maximal concentration

 $C=Cmax=a/b=1/sin(\theta)$

Non Imaging Optics (Ideal Optics)

In general, any optic

$$CAP = C*sin(\theta) < = 1$$

CAP= C * sin (θ) <=1

 Parabolic trough is very far from the limit, just like any imaging type optics!!!

CAP=C* $\sin(\theta)$ = $\sin(\phi)/\pi < 0.318$

Linear Fresnel also

• $CAP = C*sin(\theta) < 0.45$

a

Incident light with aperture $2^*\theta$

$$C=a/R$$

C/Cmax=0.45 for the best case

$$\psi$$
=40.4° (rim angle)

High Concentration?

- Results in smaller heat losses
- Particularly important if receiver is non-evacuated!
- Example: Linear Fresnel "Etendue" matched

Linear Fresnel Etendue matched

CAP<0.7 Ψ~76º

~30% more electricity delivered (400°C) than a conventional LFR of saturated steam at 270°C)

Evacuated tubular receivers

- No longer the goal is very high C!
- Etendue matching for efficiency+
- + the possibility of having an impact on overall pipe losses, pumping power, thermal fluid volume and other costs!

- Larger parabolic troughs
- Fixed receiver parabolic troughs

 Larger primaries in Linear Fresnel concentrators

Larger troughs: from ~6m to ~8m

Figure 1: Geometry of the Ultimate Trough® with wind release gap between inner and outer mirror

~8m trough, same tube and CAP <0.318 ...

It means a smaller θ !

n.i.o. solution - XX-SMS (simultaneous multiple surface)

Cátedra BES Energias Renováveis

Optical losses due to the glass envelope

• It solves a major contributor to optical losses : gap and transmission losses through the glass

New XX- SMS for fixed receiver troughs

• 10.87 m aperture CAP=0.54

Linear Fresnel concentrators

Novatec type design : CAP=0.38

16.56m

XX-SMS solution CAP= 0.57

20.11 m

Cátedra BES Energias Renováveis

Consequences

- Higher optical efficiency
- 20 to 40% less rows in a collector field
- Reduction: pipe lenght; thermal and pumping losses; heat transfer volume, etc
- Next; apply the same principles to 3D geometries (central receiver)

Thank you for your attention!