Download the report: www.iea.org/publications/insights

Renewable Energy for Industry

Cédric Philibert, Renewable Energy Division, International Energy Agency Nordic Pavillion, COP23, Fidji - Bonn, 15 November 2017

Industry represents a major issue for climate change

© OECD/IEA 2017

Industry remains dependent on fuel combustion for process heat

Source: Solrico, 2017

Heat represents three quarters of the energy demand of industries world-wide, and half of it is low to medium temperature heat, more easily supplied by direct renewable heat

Direct renewable heat is improving on various fronts

Source: Glasspoint, 2017

Enclosed troughs technology delivers significant improvements and cost reductions to solar heat, opening new applications such as enhanced oil recovery in Oman

Renewable power can replace fossil fuels in many uses

Beyond current uses, renewable electricity can replace fossil fuels in direct uses in buildings, industry and transports, directly or through electrochemistry/electrolysis

Ammonia precursor of fertilisers: a low-hanging fruit

Ammonia may have multiple uses in industry as feedstock, process agent and fuel

Producing ammonia from cheap solar and wind

At USD 30/MWh or less, and with high capacity factors, solar and wind power in best resources areas can now run all-electric ammonia plants at competitive costs.

The emergence of low-cost renewable power is a game-changer

Hybrid solar and wind full load hours adjusted for overlap

Capacity factors of combined wind and solar power exceeds 50% in vast areas, often remote from large consumption centers, potentially delivering huge amounts of power at less than \$30/MWh

Source: Fasihi & Breyer, 2017

Exploiting cheap RE will require massive trade

Source: Japan's Energy Carriers Program, 2017

Ammonia is rich in hydrogen, easy to store and ship, and may prove the most versatile carrier of renewable energy

Ammonia is also a fuel

Works in combustion engines, turbines, fuel cells, directly/cracked

- 100-y safe handling in industry
- Stationary applications in power and industry sectors
- A possible fuel for boats, long-haul trucks, even lighter vehicles
- Power-to-power efficiency better than other fuels for long-term storage
 - Pumped-storage hydropower and batteries more efficient short-term storage options

Power to power efficiency

Fuel	PtP efficiency CO ₂ from air	PtP efficiency CO ₂ from fumes
CH ₄	27%	31%
MeOH	27%	32%
DME	23%	28%
NH ₃	35%	
NH3 PEM	29%	
NH3 SOEC	39%	

Sources: Grinberg Dana et al, 2017

Ammonia can be used as a carbon-free fuel in various ways, which must be further developed

Renewable power can make CO₂-free iron and steel

Sources: Hybrit Projekt, 2017

Substituting natural gas with renewable-based hydrogen for direct iron reduction may be phased in gradually and lead ultimately to CO₂-free iron and steelmaking

Renewable hydrogen can be combined with recycled CO₂

Manufacturing methanol from renewables-based water electrolysis and recycled CO₂ would strongly reduce life-cycle CO₂ emissions and could drive negative emissions

Multiplying the use of constrained biomass feedstock

Source: Hannula, 2016

Using hydrogen and oxygen from renewable electricity can augment the potential of biomass in converting CO₂ into fuel

iea

Electrolysis might allow for CO₂-free cement manufacturing

of CO₂ utilization, 2017

Still at lab-scale, molten carbonate electrolysis run on solar and wind could be coupled with an oxyfuel cement factory and produce high-value carbon nanotubes instead of CO₂

Policy options

- > De-risking investment is key as always
- Carbon pricing would improve competitiveness
- Risks of carbon leakage for heavily-traded commodities
 - Global sectoral agreements?
 - Border carbon adjustments? Standards?
 - Reconsidering the carbon leakage issue and identifying win-win strategies will help fostering RE deployment in most favourable areas - and vice-versa
- Procurement of green materials could help jump-start deployment
 - Private procurement by Business-to-Consumer companies, public procurement for infrastructures

A new era of international collaboration is required to foster global decarbonisation of industry

- > Industrial air pollutants and CO_2 emissions must be addressed
 - Renewable heat can increase its contribution but faces obstacles
- The recent rapid cost reduction of solar PV and wind power opens new possibilities for greening the industry
 - > Directly with electricity
 - > With hydrogen-rich chemicals, including ammonia, as feedstocks, process agents and fuels
- > Electrification of industry can help integrate variable renewables.
- RE for industry creates new Terawatt-scale market opportunities for PV and wind
 - International collaboration should facilitate new forms of international energy trade

Download the report: www.iea.org/publications/insights