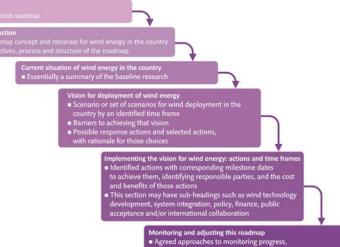


How2Guide for Smart Grids in **Distribution Networks**

Simone Landolina **Global Energy Interconnections: Smart Grids and Beyond** 22 June 2015 Beijing, China




IEA Roadmaps and How2Guides

www.iea.org

IEA Global Roadmaps

- Where do we need to go?
- Where are we today?
- Global vision and guidance on deployment pathways

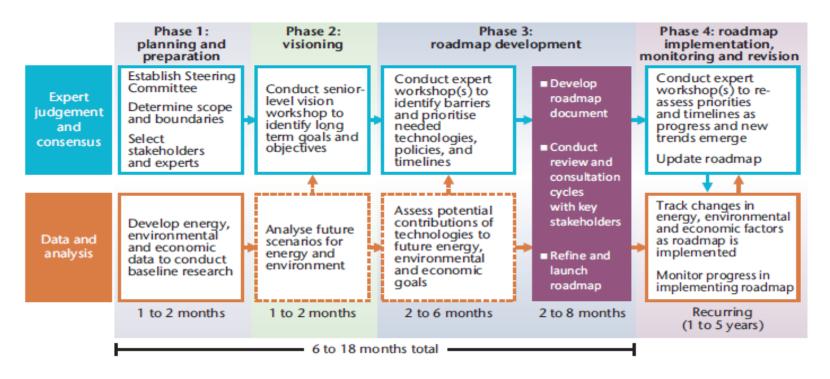
with specific metrics where possible ntified parties tasked with monitoring implementation

INTERNATIONAL

© OECD/IEA 2015

IEA Technology Platform How2Guides

Provide practical information for policy makers and planners to establish a national or regional technology-specific roadmap



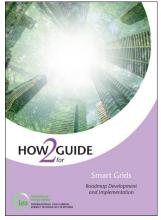
How2Guide framework

www.iea.org

Provides tools and steps for decision makers to implement a strategic technology roll-out

How2Guide for Smart Grids

Why are we doing this?

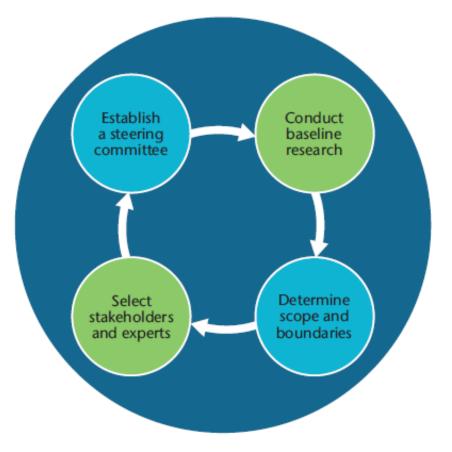

- To scale-up IEA capabilities to provide support to countries for national / regional smart grids roadmap development
- To enhance the impact of the IEA's technology roadmap programme

Is this only for IEA Members?

- Not at all key Partner countries and other emerging economies are key How2Guides contributors and audience
- Countries that already have smart grid roadmaps can use it as a tool for internal revision and to accelerate technology deployment

Why focus on distribution networks?

- Great potential and need for development at this time
- Transmission system "smartening " is already quite advanced
- Key role to integrate renewables and reduce losses

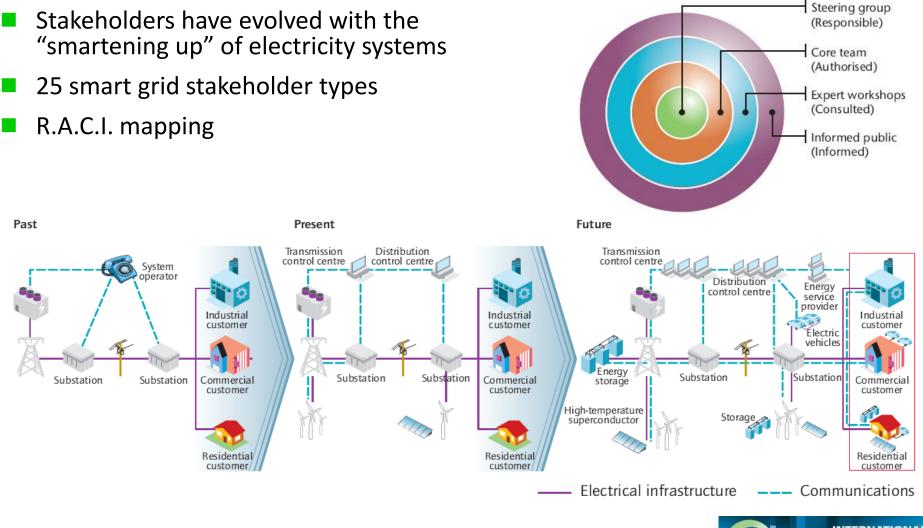

www.iea.org

INTERNATIONAL LOW-CARBON ENERGY ECHNOLOGY PLATFORM

Phase 1: Planning and preparation

- Determine physical and institutional infrastructure that support technologies and enable deployment
- Select key stakeholders at varying phases and levels of technology deployment
- Define "Smart Grids" !

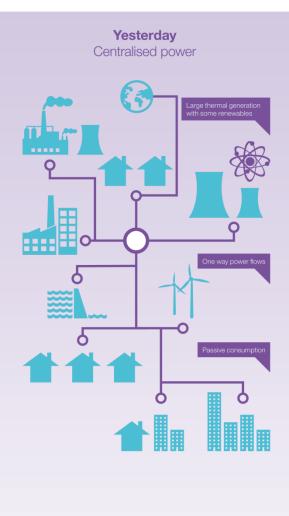
A smart grid is an electricity network system that uses digital technology to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demand of end users (IEA, 2011).

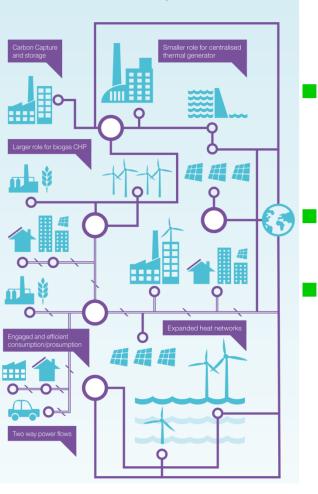


© OECD/IEA 2015

Phase 1: Planning and preparation

www.iea.org


INTERNATIONAL LOW-CARBON ENERGY TECHNOLOGY PLATFORM


2	4	iea Internationa Energy Agen 1974•201	cy	study: smart grids applications and main stakeholders www.iea.org							
		NETWORK MGT	DER INTEGRATION	SMART METERING INFRASTRUCTURE	EV RECHARGING INFRASTRUCTURE MGT						
	DSO	 ✓ Remote control and operation ✓ Automation and self healing ✓ Monitoring in Real time ✓ Planning and Maintenance 	 ✓ Optimizing Network configuration ✓ DER monitoring ✓ Grid planning and mgt ✓ Voltage regulation velocity 	 ✓ Outages management ✓ LV Network monitoring ✓ Fraud detection and balancing activities 	 ✓ Monitoring and control of charging process ✓ Load flexibility enabled √^{E^N} ✓ Vehicle to Grid (V2G) Services √^{E^N} enabled 						
STAKE	SYSTEM	 ✓ Information Exchange with the TSO ✓ Dispatching in emergency situation 	 ✓ DER observability for the TSO enhanced ✓ Forecast of generation ✓ Generation curves to GSE ✓ DER control in emergency situation ✓ Local dispatching enabled ^{NE^N} 	✓ Load flexibility enabled $≪^{9}$	✓ Load flexibility enabled $\sqrt[n]{8}^{rak{N}}$						
STAKEHOLDERS	CUSTOMER	 ✓ Outages fast restoration ✓ Trouble calls mgt with automatic response 	 ✓ Unnecessary disconnection avoided ✓ Voltage quality improved ✓ Generation and consumption optimization enabled for LV prosumers 	 ✓ Reliable billing based on actual consumptions ✓ Flexible tariff structure ✓ Remote Contract management (activation/deactivation etc) ✓ Empowering customers with higher quantity and quality of info 	 ✓ Interoperable and multi vendor EV charging ✓ Fast charge 						
	MARKET	 ✓ Information Exchange with PA for city planning and decision making √^{S⁴} 	 Active demand enabled Opening new markets for local DER dispatching	 ✓ Metering data validation and settlement ✓ Fast and easy switching enabled ✓ Active Demand and VAS enabled by metering data 	 ✓ Metering data validation and settlement ✓ Market competitiveness enhanced through interoperable and multi vendor EV charging 						

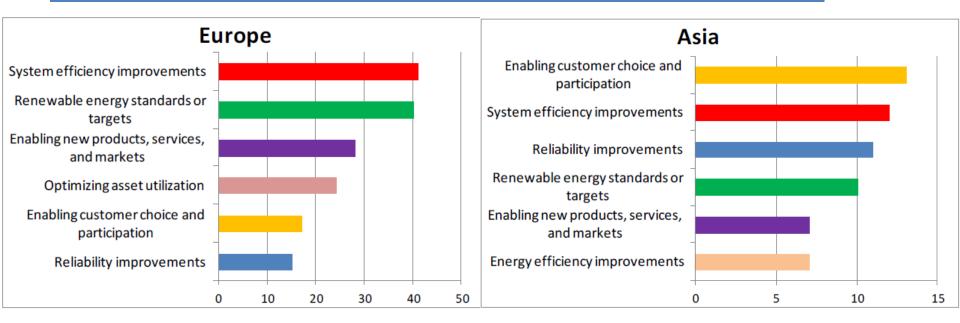
Phase 2: Visioning

www.iea.org

Tomorrow

Clean, local power

- Determine long-term goals and objectives through stakeholder involvement
- Clarify **drivers** and consider **project types** that can meet national and regional needs
- Define **desired outcomes** of technology deployment
- Establish a mission statement taking into account objectives, national considerations and long-term strategies


Source: What future for cities and the energy system? A UK perspective. Dr. Steve Hall, Univ. Leeds

Phase 2: Visioning

www.iea.org

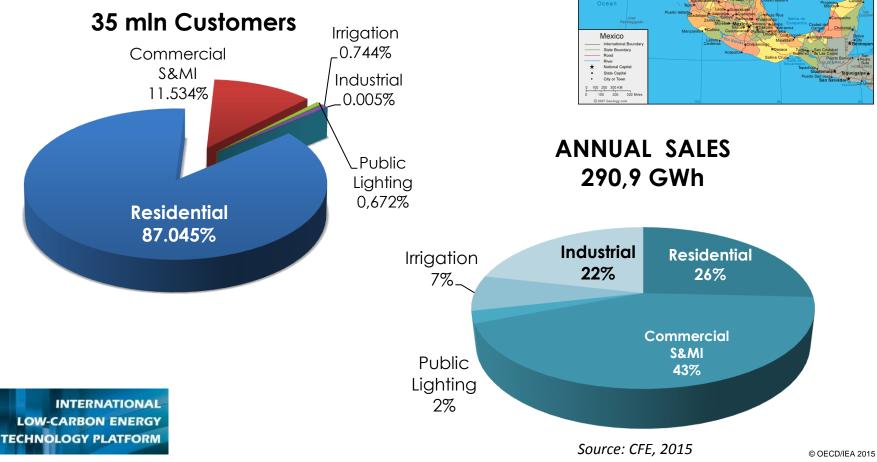
Figure 4 • Top drivers: ISGAN survey analysis of 22 countries

Source: adapted from ISGAN (2014), "Smart grid drivers and technologies by country, economies, and continent," ISGAN website, www.iea-isgan.org/index.php?r=home&c=5/378 (accessed 29 September 2014).

The IEA H2G classifies SG drivers in 7 types

- reliability
- efficiency
- economic
- environmental

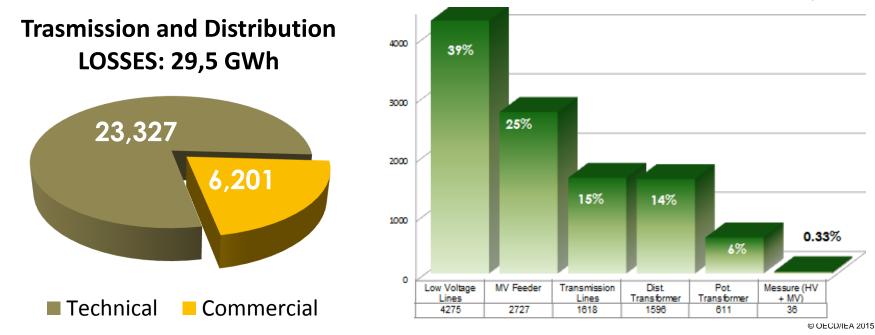
- security
- safety
- overall cross-cutting



Case study: Mexico (I)

www.iea.org

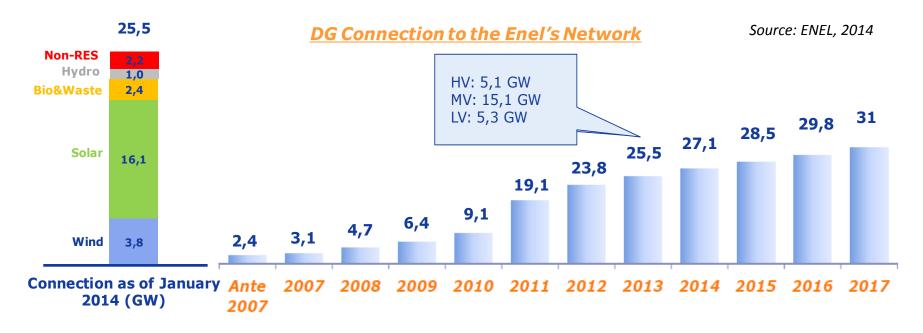
 Comision Federal de Electricidad (CFE): vertically integrated company, with activities in planning, generation, distribution, sales, operations and maintenance



Case study: Mexico (II)

www.iea.org

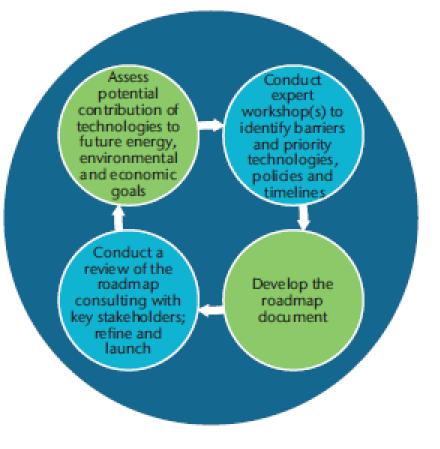
- 79% technical losses and 21% commercial losses or electricity theft = USD 2,5 million in decreased revenues (2011)
- Loss reduction as primary driver for 2011-2026 smart grids strategy: installing substations, smart meters and demand management technologies



Source: CFE, 2015

Case study: Italy

The ambitious national support schemes for low-carbon generation led to a significant market penetration of distributed generation (DG) from RES


The increased share of RES connected urgently required the evolution of the distribution network management

© OECD/IEA 2015

Phase 3: The roadmap document

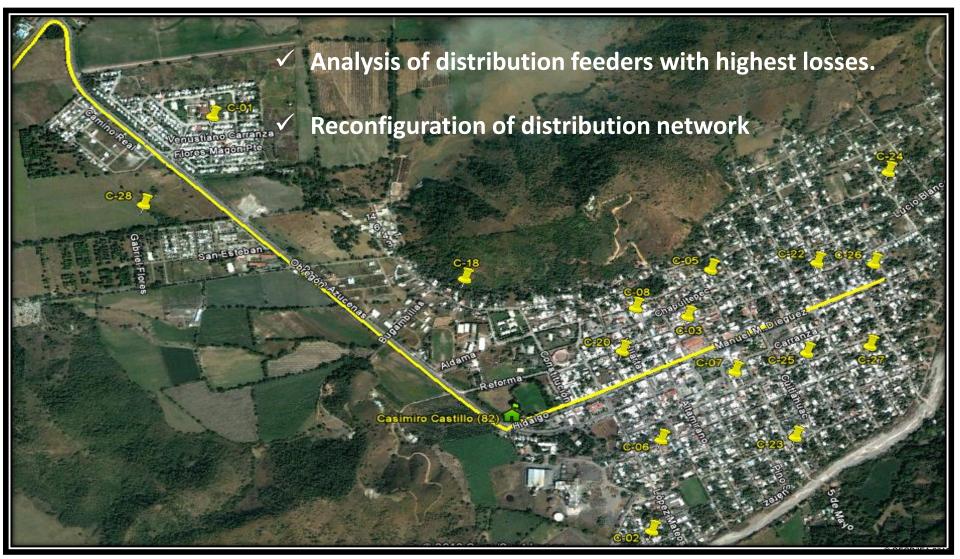
www.iea.org

International

Energy Agency 1974•2014

- Assess the technology deployment in terms of holistic energy, environmental and economic strategies
- Identify potential barriers and correlated response actions
- Determine priority technologies that can meet objectives
- Develop a roadmap with stakeholder consultation, setting timeline and milestones

				1		100					
4 iea Internet		Project type	Advanced Metering Infrastructure	Distribution Automation	Control Center Systems	Customer Side Systems	DER - Storage	DER - Distributed generation	DER - De mand response	Substation Automation	Asset Management
	Driver										
Advanced Meters (AMI)	Reliability Reliability improvements Power quality improvements	-									
	Power restoration improvements Network adequacy Generation adequacy										
Distribution automation	Efficiency System efficiency improvements (reduction in peak load, T&D losses, etc.) Optimizing asset utilization										
Customer-side	Energy efficiency improvements Enabling new products, services, and markets Enabling customer choice and participation										
systems	Economic advantages New revenues										
DER-Storage	Revenue collection and assurance improvements Reducing operating and maintenance costs Environmental										
DER- Distributed	Renewable energy standards or targets Reduce carbon footprint Regulatory compliance Renewables										
generation	Security National security concerns Enhanced power system resiliency to natural and human threats										
DER-Demand	Safety	-									
	Safety improvements										
response	Crosscutting										
	Aging infrastructure concerns Rural electrification	-									
	Job creation										
Substation	Increased flexibility										
automation	Shifting ownership structures	┦									
automation	Consumer involvement										
Asset											
	Can address driver as a primary outcome of the project	_									
management	Can address driver as a secondary outcome of the project Can address driver to a small degree as a project outcome	-									
	can address driver to a sman degree as a project outcome										



Case study: Mexico

www.iea.org

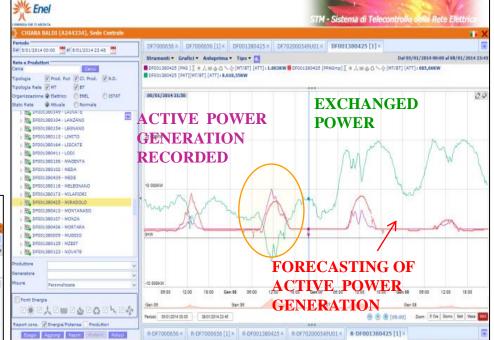
Source: CFE, 2015

Priority: reduce technical losses

Case study: Italy

www.iea.org

High variable RES


Priority: monitoring and control of active distribution grid operation

Main Features

- Monitoring and Forecasting of Active Power Generation sources connected to the MV and LV feeders;
- Support to Distribution Grid Operators for the daily operation of active network.

POWER GENERATED BY MV PRODUCER COMPARED WITH RECORDED MEASUREMENTS

HV/MV SUBSTATION WITH AN EXAMPLE OF REVERSE FLOW

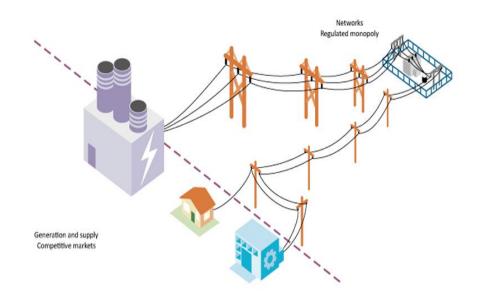
Source: ENEL, 2014

Identifying barriers

www.iea.org

- Barriers can be broadly categorised into five areas:
- legal and regulatory
- project delivery and workforce capability
- economics and financing
- electricity market and systems aspects
- social and cyber security considerations

"We cut through all the red tape, but a new shipment came in this morning."


Barriers and response actions

									Possil	ble re	spon	se a	tion	5												
Legal and regulatory									ct del force								nics a ncing	nd	Electricity market and systems						Social acceptance and cyber security	
Common barrier	d Laws and regulatory strategic planning	Tariff restructuring	Revise ownership structure	Standard product requirement	Targeted Installation	Management oversight	Local telecomm partnering	Design to recycle	Develop local workforce	Reskill technicians	Establish new training facilities	Attract qualified workforce	rrom abroad Adapt hlaher education curvicula		Long-term financing	Private financing	Fiscal Incentive schemes	Grants	Progressive installation pace	Support local Industry	development Partner with alobal manufacturer	for local production	Develop "open source" products	International partnering	ICT security solutions	Communication campaign
Financing/cost	1	\checkmark	\checkmark	\checkmark			\checkmark								\checkmark	\checkmark	\checkmark	\checkmark								
Project planning and delivery			×	~	~										~	~	~	~	~	~	,			~		
Technical/produc solutions	t			~				~														~	~			
System operation aspects	ı			~	~				~	~	~	V											~			~
Operations and maintenance				~	~				~	~	~	1	V	^						~	,		✓	~		
Security/privacy	× .			×			×			1	~	~	~												1	\checkmark
Legal and regulatory	✓	~	×	~		~	✓	~																	~	
Human resources development	5				~	~	×		~	~	V	V	V	-	~			~	~	V		1		~		
Cross-cutting	×		\checkmark			\checkmark										\checkmark	~						\checkmark		1	\checkmark

Economics and financing (I)

Under what institutional conditions is smart grid investment more likely or accelerated?

- Revenue structures as opportunity
 / barrier to smart grid deployment
- Defining and capturing values delivered by the smart grid to assets
- The sum of values must exceed the sum of investments + incentives

Economics and financing (II)

www.iea.org

Example: Municipal ESCos

- Energy services supplier at the city scale
- Enables Local Energy Schemes with PPAs
- Not necessarily grid owner but plays an aggregator role balancing local embedded generation with wholesale purchases

Implement two actions at the outset before the smart meters are deployed:

3.410W

1,150W

996w 991w 634w 298w

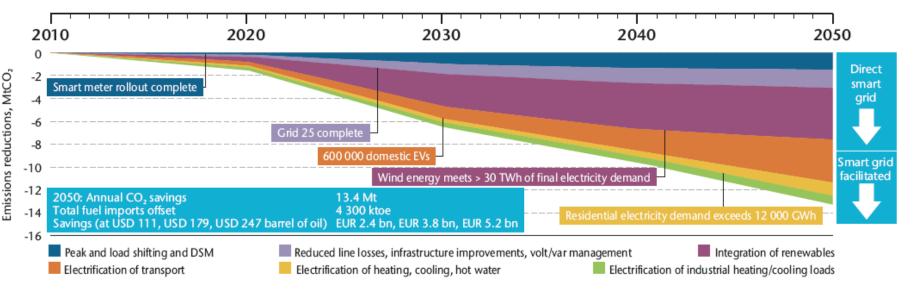
8,795W

DED

Ground floor > Currently

W. machine

- 1) set a privacy policy designed to protect customers and
- 2) install standard and advanced cyber security technologies


© OECD/IEA 2015

Phase 4: Implementation, monitoring and revision

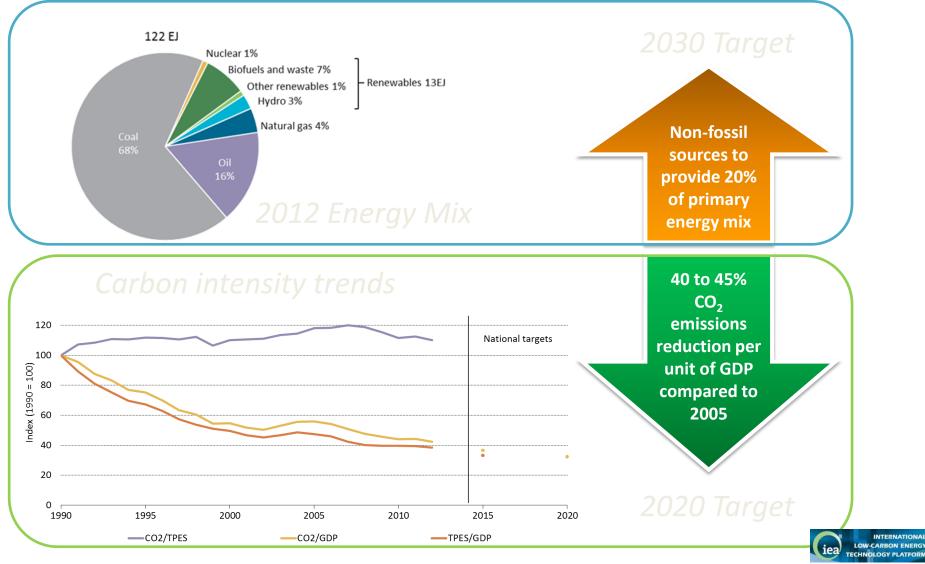
www.iea.org

Figure 13: Irish smart grid roadmap: Key milestones

Strategic roll-out of selected technologies

Source: SEAI, Ireland

- Develop a monitoring system with quantitative and qualitative indicators measuring success of implementation
- Track changes in other related sectors that influence roadmap implementation
- Re-evaluate and re-assess priorities, timelines and objectives; update the roadmap as necessary


INTERNATIONAL LOW-CARBON ENERGY TECHNOLOGY PLATFORM

© OECD/IEA 2015

China's energy challenge

www.iea.org

© OECD/IEA 2015

Monitoring progress

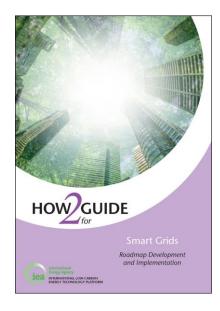
Indicator type	Description	Metrics							
Smart grid technology deployment	 Number of (pilot) projects implemented Generation capacity connected to the smart grid Reduction of losses Consumer adoption of technologies 	 Units MW/GW Comparison with pre-smart grid metrics Number of consumers connected to the smart grid 							
Financial	 Grants and incentives available Market expansion for smart grid technologies Project financing with lending by financial institutions 	 Total value of secured funds Monetary growth over timeframe USD 							
Processes	 Number of stakeholder workshops organised Number of new institutions created Effectiveness of awareness raising/campaigns organised 	 Unit Unit Unit Number of customers impacted by marketing or engagement strategies; qualitative assessment of customer acceptance 							
Policy	 Policies defined and adopted Increase in political support Milestones specific to sectoral strategies 	 Unit; qualitative assessment of goals of policies and whether the right tools are being deployed Qualitative assessment of policy makers' actions Number of milestones being met 							
Socio-economic and environmental impact	 Social: jobs created; customer education/training Environmental: CO₂ reductions; increased system efficiency 	 Number of jobs and customers reached Comparison with pre-smart grid metrics 							

International collaboration and knowledge transfer

- Tracking and monitoring progress can be challenging
- Collaboration with the IEA, ISGAN and other int. organisations and networks to exchange experiences on:
 - **existing barriers or issues** to technology deployment
 - engaging relevant stakeholders on policy and investment opportunities
 - identifying response actions that foster next steps towards energy innovation in China

IEA – SENER - FSE: 29 May 2015, Mexico City

- Key challenge: co-ordination among regulatory, electricity, and grid authorities
- Key opportunities: Mexico's 2014 energy reform presents a strong focus on opening the market for new players and management strategies; huge potential for increased renewable energy and flexibility with use of smart grid technologies



Closing remarks...

How2Guide for Smart Grids in Distribution Networks:

- Step-by-step framework for roadmap development and implementation
- Engage diverse stakeholders throughout all phases of planning and implementation
- One size does not fit all. Take national/regional drivers into full account to identify the smart grid technology options that respond best to local needs
- Monitor, re-evaluate and revise the roadmap—it is not a document to be "left on the shelf"!

...and take-away messages

The overarching message on smart grids is twofold:

- (I) Smart grids are advanced technologies to improve overall system efficiency and options, including greater integration of renewable energy.
- (II) Smart grids can be an infrastructural catalyst for enabling energy sector transformation, including supporting sustainable urban development.

Recommendations:

- (1) **Multilevel governance is critical**. National and local energy system policy, strategy and system regulation cannot be treated in isolation.
- (2) Get the demand side right. Demand and supply should be integrated at the city scale so energy policy needs to treat distributed generation and (aggregated) demand response equally and in the same framework.
- (3) New stakeholders mean new business models. New ways of valuing energy systems are needed that require new decision support tools.

Thank you!

- How2Guide for Smart Grids in Distribution Networks: <u>http://www.iea.org/publications/freepublications/publication/technology-roadmap-how2guide-for-smart-grids-in-distribution-networks.html</u>
- IEA roadmaps: <u>www.iea.org/roadmaps/</u>
- IEA How2Guides:

www.iea.org/aboutus/affiliatedgroups/platform/how2guides/

Contact:

Simone.LANDOLINA@iea.org

TechPlatform@iea.org

