

IEA Workshop Paris Smart Grids – current status

Smart Grid deployment Where are we?

- Global energy challenges
- Renewable energy market situation and trends
- Challenges for the grid
- International cooperation Grid4EU smart grid project
- Summary

Global energy challenges

Properties of renewable generation Fundamentally new challenges for power systems

Variable and uncertain generation

Maximum output varies depending on wind and sunlight No perfect forecast for wind and sunlight available

Inertial response capability

Non-synchronous generation technologies connect to grid via power electronics and have little or no inertial response capability

Location constrained

Areas with the best resources are often situated in remote locations. Tapping into these resources will require efficient ways to transport a large amount of power over long distances

Modularity

Renewable power generation can be found as residential or commercial size. Increasing levels of distribution level generation will require new approaches to regulate and manage this energy.

Market situation and trends

Renewable energy Global installed capacity more than double by 2040

Source: IRENA Statistics

Wind and solar amount to 50% of total renewables in 2040

Renewable integration Affecting all levels of power systems and markets

Integration level

Main issues

Local connection to the grid

- Voltage control
- Reactive power control
- Power quality
- Power flow and overload control
- System protection

System-wide integration

- Generation adequacy
- Network enforcement and extension
- Balance of load and generation, load-frequency-control
- Renewable curtailments and demand response

Market integration

- Area balancing
- Price volatility
- Generation forecasting
- Regulation and financing schemes

Challenges for the grid

The evolving grid From traditional to smart grid

- Centralized power generation
- One-directional power flow
- Generation follows load
- Top-down operations planning
- Operation based on historical experience

- Centralized and distributed generation
- Multi-directional power flow
- Intermittent renewable generation
- Consumption integrated in system operation
- Operation based on real-time data

Service and Maintenance

The evolving grid New intelligence

Communication networks

Renewable integration Technologies to increase system flexibility

Driver		Conv. generation	Transmission	Distribution	System operation	Application
Variability and uncertainty		High efficiency all over output rangeFlexibility	Trans-regional levelingOverlay grid/ HVDCBulk storage	Distributed storage	 Demand response VPPs² PMU/WAMS³ 	Storage (in applications)Demand response
Lack of inertial response capability		 Faster activation of FCR⁴ 	 Fast storage 	FlywheelsFast storage	 Faster response of FCR⁴ 	 Demand response (frequency response)
Locational constraints			 FACTS¹ Long dist. transmission Overlay grid/ HVDC 		Stabilization with FACTS ¹	
Modularity, distributed- ness				AutomationVoltage regulation (grid)Voltage support (gen.)	 Communication Control VPPs² 	

¹ FACTS: Flexible AC Transmission Systems

⁴ FCR: Frequency Containment Reserve

² VPP: Virtual Power Plant

³ PMU/WAMS: Phasor measurement units/wide area monitoring systems

Smart Grid is also a political issue Many players need to be informed consistently

Smart grid collaboration

ABB Smart Grids R&D projects enable smart grids understanding

We have on-going developments in all relevant areas of smart grids in several regions across the world.

Grid4EU Innovation for Energy Networks

6 Main European DSOs cover more than 50% of electricity supply

Customers: Six main European DSOs

RWE, Vattenfall, Iberdrola, ENEL, CZE, ERDF

Partners: More than 25 partners and institutions around Europe

Key objectives:

- Develop and test innovative technologies
- Define standards through the set up of demonstrators
- Guarantee the scalability of these new technologies
- Guarantee the replicability over Europe
- Analyze Smart Grid Cost-benefits (Business Case)

ABB's contribution:

ABB contributed its technology and expertise to three of the six demos: Demo 1, 2 and 5.

Summary

Enabling clean power for a sustainable world A holistic challenge – technology, markets, laws,...

- Large scale integration of renewable energy means
 - Long distance transmission
 - Integration of all types of highly distributed resources
 - Matching highly volatile supply with demand

- Technical challenges
 - HVDC overlay grids
 - Storage
 - Managing the complexity of millions of devices
 - Stabilizing the system with little or no inertia

- Non-technical challenges
 - Framework for defining and maintaining infrastructure
 - Market design and business models
 - Consumer behavior

Many components are already available today, but we have still a long way to go!

Power and productivity for a better world™

Grid4EU - Germany Advanced MV network operation

RWE is one of Europe's five leading electricity and gas companies

Partners: RWE, TU Dortmund, EU, seventh framework program

Key objectives:

- Flexible MV networks for integration of high amounts of DER
- Installation of observer and control capabilities for MV networks
- Increase of automation of the network (fault detection, self-healing structures)
- Higher reliability and shorter recovery times after grid failure

ABB's response - Smart grid scope

- Develop autonomous RTU500 agents to determine and optimize the current MV network status
- Direct communication between RTUs
- Automatic Fault Detection, Isolation and Restoration with RTU500

Grid4EU - Sweden LV network monitoring and control

Vattenfall is a Swedish power company, wholly owned by the Swedish government

Partners: Vattenfall, Schneider Electric, KTH, EU, seventh framework program

Key objectives:

- Demonstrate the use of data collected by existing and future AMM technology
- Achieve monitoring and control of the LV Network enabling:
 - Connection of small scale DER
 - Increased AD
 - Extended use of power quality information
- Support network operations and customer information exchange

ABB's response - Smart grid scope

- Provide data to 112 Secondary Substations:
 ABB RTU560 with CVD-multimeters and GPRS modem
- RTU 560 cabinet design, implementation and deployment
- SCADA system architecture: MicroSCADA SW suite including DMS 600 and historical database (Historian SYS600)

Grid4EU – Czech Republic LV and MV grid automation

Partners: CEZ, TU Dortmund, EU, seventh framework program

Key objectives:

- Management of island operation
- Medium voltage and low voltage grid automation and failure management

CEZ is the largest utility and biggest public company in Central and Eastern Europe

ABB's response – Smart grid scope

- Horizontal and vertical communication links according to protocol IEC61850 (mostly GOOSE) on MV level for protection system and fast load shedding purposing while island operation.
- Protection system set up and calculation for all network modes.
- RIS development Fully automatized street LV cabinets with communicating small RTU device

