

The original *Saving Electricity in a Hurry* 2005

- Based on a workshop and research conducted by the IEA
- Described the increasingly-common problem of temporary but serious shortfalls in electricity supply
- Key examples:
 - 2001 Brazil power crisis
 - California's 2001 power crisis
 - Europe's Hot Summer 2003
 - New Zealand's double drought
 - Norway's 2003 dry, cold winter
 - TEPCO's 2003 Nuclear Plant Shut Down
- Highlighted proven coping strategies that relied on quick action by consumers

Accommodating electricity demand growth is a challenge around the globe

- Electricity demand growth is accelerating
- Governments hard-pressed to finance new supply
- Siting and technology choices are sensitive

Saving Electricity in a Hurry in New Zealand

SERC / IEA Workshop Saving Electricity in a Hurry 23 February 2012 Beijing

Robert Tromop IEA

International Energy Agency

(Jh/ & yeye

What's the problem?

- NZ electricity system is 70% hydro with limited (40 day) river system storage and considerable inertia in annual snow melt.
- Hydrological inflows fluctuate significantly with the pacific ocean weather patterns:
 - Southern Pacific Oscillation, 10 year cycle
 - La Nina El Nino, 3 year cycles
 - Chaotic as well as complex
- Some transmission constraints: 11000km, 178 GXP system, 350Vdc 700MVA link from lakes in South to load centers in North.
- Sometimes things go wrong

Large industrial customers

- Pricing: industrial users carry both hedge and spot contracts according to load type and are incentivised to respond.
- Get half hourly spot price signals that they analyse against prevailing business environment and make operational decisions in short run;

Reduce / alternate output

Shed load

Use alternative generation, fuel switching...

In the long run;

 Energy efficiency decisions, alternative energy sources, plant upgrades, etc

What about residential and small commercial consumers?

- Sect 42 of the Electricity Act requires:
- Pricing; Customer Compensation Scheme (March 2011)
- Households get NZD10.50 per week during a Public Conservation Campaign (PCC)
- Based on estimated value of consumer conservation.
- PCC initiated by System Operator (Transpower) when risk is >10% for more than 1 week.

What are the smart network companies doing? Orion Networks NZ

- 20+ years of effective demand response pricing, avoiding investment in new transmission.
- Pricing; Major customers face control period demand prices for 80-100 hrs during three winter months
- Developed EE, LPG, and tech solutions
- Lowest cost provider of network services in NZ
 - Asset Management Plan

- Network Quality Report
- Load Management Dashboard
- www.Orion.co.nz/load management

Electricity Efficiency Programmes supplement market policies

- Lighting residential and commercial
- Electric motors and drives
- Heated towel rails
- Compressed air
- Funded by levy on all electricity sales
- \$11M/yr scheme funds projects with c/kWh saved costs below LRMC of generation
- www.eeca.govt.nz

System Management

- System Operator, Emergency Management Policy <u>www.systemoperator.co.nz</u>
- Managing Security of supply risks 2011
- Stress test regime 2011
- Review of 2008 Winter
- Buy-back consultation document 2008
- Annual Security Assessment 2007
- 2007 Reserves Assessment
- Proposal for rolling outage regulations and planning 2006
- Security of Supply Policy Development 2004 all at <u>www.ea.govt.nz/search</u>

Key Features

- Key players in the market (the regulator, generators, transmission, distribution, retailers and large users) all have response plans and strategies in place before the event;
- A clear understanding of "when is this a problem", the emergency zone definitions provided real clarity that all can understand;
- A market which enable rational responses from users by sending "appropriate" price signals
- Information which enables robust decisions including hydro reserve and output data for all to understand;
- Consultation and co-operation between government, regulator, suppliers and users enabled industry led initiatives.

So what have we learned on the way?

- When you identify that you have a supply problem its too late; ad hoc responses are more disruptive and ineffective than necessary
- Setting up the electricity system to reflect supply risks by information and price is key to stimulating efficient innovative responses and rewarding economically efficient demand responses
- If you accept that 'things can go wrong' and have dynamic market signals; supply and demand side players innovate a range of cost effective and more durable options
- Increased responsiveness supports other policies; minimum prices, increasing renewables, ETS
- Need to continue learning, reviewing, reporting.

Concept Model for Effective Security and Energy Efficiency in Electricity Systems

Grants Obligations Programmes Certificates Tax policy Regulations...

Targeted measures for persisting gaps and barriers

Value Chain Capability

Skills to go beyond kWh sales ESCos, local community partners... Consumer capacity to respond well

Market rules Disclosure information Obligations Tariffs....

Efficient Market Design

Transparent prices enable many sound EE options Status and risk information Inclusivity; Consumers, low entry costs... Electricity efficiency projects; motors, comp air, lighting...

Escos, Best practice programmes, Training,

System risk analysis Options analysis System operator response rules Information for all

Summing up....

- Successive dry year crises have compelled government to ensure that:
 - the NZ electricity market is set up to send clear price signals and system information to reflect supply risk
 - Market participants are enabled to manage this risk and develop many innovative responses
 - Consumers can receive market intelligence as well as spot price signals to encourage timely action
 - Everyone, including consumers, learns to weigh up costs and benefits of a range of cost effective lead shedding, EE, and alternative supply options