

Brazil 2002: Sensible Rationing to Alleviate Prolonged Electricity Shortfalls

SAVING ELECTRICITY IN A HURRY

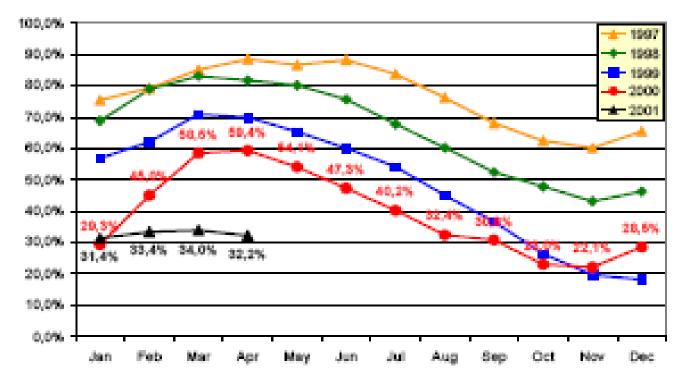
Luiz Maurer International Finance Corporation, The World Bank Group

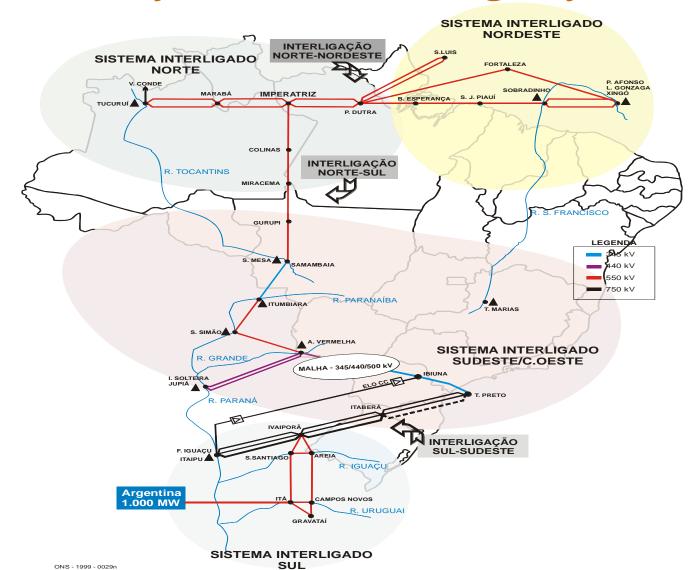
> Beijing February 23, 2012

Causes of the Brazilian 2001-2002 Power Crisis

- How Brazil approached the crisis in the short term
 Rolling black-outs or
 - Quotas?
- Speed of customer response
- Results achieved
- Can this experience be replicated elsewhere?
- And the day (s) after?
- Where to learn more?

Causes and extent of the 2001 Brazilian crisis


- The most serious energy crisis in recent history
- Affecting 80% of the network, including the heavily industrialized and populated Southeast region
- Hydro dependent system (>90%) has been strained - beyond capacity after several years of below average rainfall
- Capacity expansion had not kept up with market growth
- Some experience in the past in dealing with similar situations but not to this extent and magnitude


The crisis was not a surprise - 2001 only a wake up call

Graph 4.2: Multi-Year Reservoir Depletion— Southeast

Southeast and Center-West Regions Storage Levels (% of storage capacity)

Hydro is hydro – even large systems fail

How Brazil approached the crisis

- A "self-rationing," market-based demand driven scheme
- Quotas were assigned to individual customers (20-25% reduction target) similar to the TECC concept
- Honest perception of crisis and massive educational campaign
- Penalties and incentives mostly of pecuniary nature and linked to SRMC at wholesale market (about US\$ 300/MWh)
- No single black-out or brown-out -- +20% reduction, over 8 months, almost country-wide
- At least 1-1.5% of GDP saved (vis-à-vis rolling black-outs)
- An efficient safety net fostering engagement from the poor
- Not everything rosy but a successful case, with many lessons learned

Implementation of "rolling black-outs" is more complex than normally alleged – and much less effective for MWh constrained systems

- Networks are inter-meshed "essential" loads = 40% of feeders
- "Intra-day" load shift weakens the effectiveness of the scheme for
- Those two factors would entail a disproportionate burden on some customers (10 to 16 hours/day !!)
- Manual nature of disconnection operations, difficult to follow a precise timetable
- Dire consequences
 - Hurts manufacturing activities with continuous processes
 - "Melancholic urban chaos"
 - Timetables may increase crime rates

Quotas (TECCs) were differentiated by customer segment

	2000 Consumption	Reduction Target	Financial Charges (Penalties)	Bonuses?	Individual Cuts?
Residencial Residencial	Till 100 kWh/mo From 101 till 200 kWh/mo	Optional 20%	No No	2 to 1 saved 1 to 1 saved beyond target	No Yes
Residencial	From 201 till 500 kWh/mo	20%	50% of tariff, if above target	1 to 1 saved beyond target	Yes
Residencial	Above 500 kWh/mo	20%	200% of tariff, if above target (1)	1 to 1 saved beyond target	Yes
Industrial/Commercial (High Voltage)	Above 500 kWh/mo	15% to 35%	MAE price for consumption above target	No (2)	Yes (3)
Industrial/Commercial (Low Voltaqe)	Above 500 kWh/mo	20%	MAE price for consumption above target	No	Yes (3)
Rural	No limit	10%	No	No	Yes
Public Services	No limit	15% to 35%	No	No	Yes

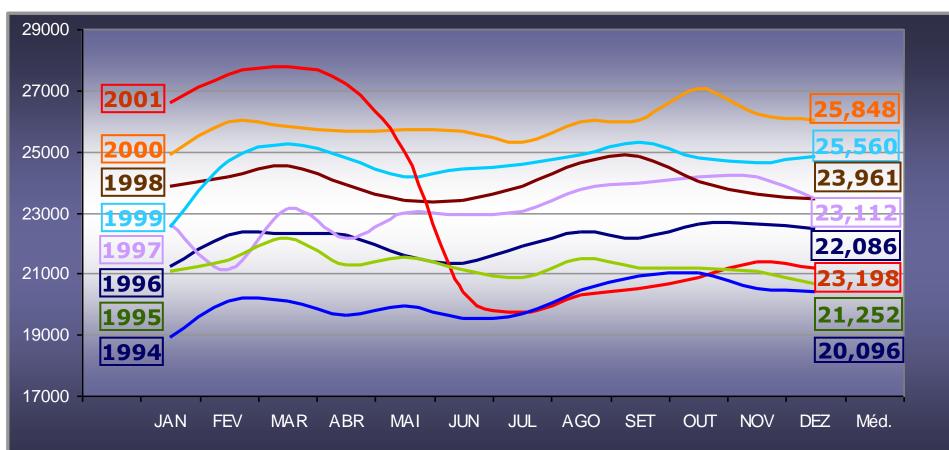
(1) Corresponds approximately to MAE price

(2) May trade quotas. In the wholesale market, if load > 2.5 MW

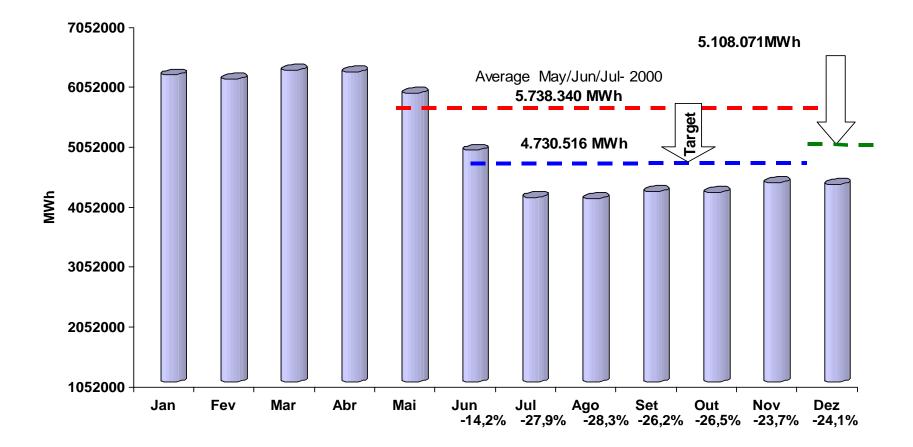
(3) Cuts by number of days to achieve target, unless company "buys" quotas in the market

Trading prerogatives varied among customers

May participate in the secondary market for "quotas" (marginal transfer)


High Voltage < 2,5 MW

May trade "quotas" on a bilateral basis (same holding company)

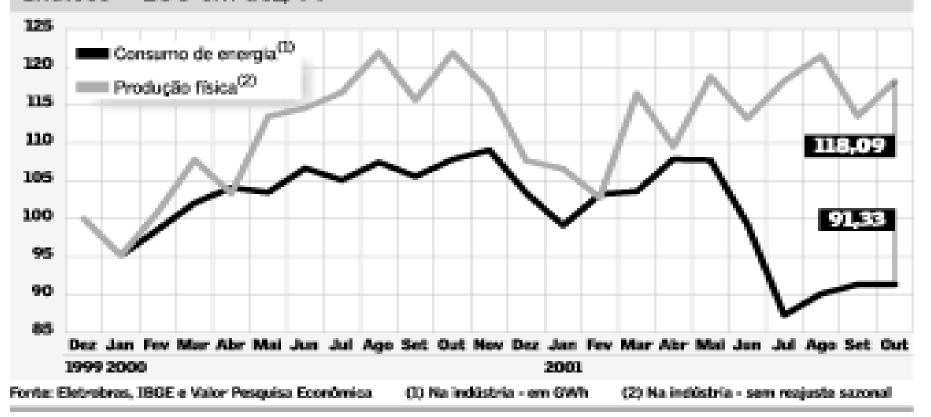


No trading allowed, but surpluses and shortfalls priced close to SRMC, traded with host utility and settled via electricity bill

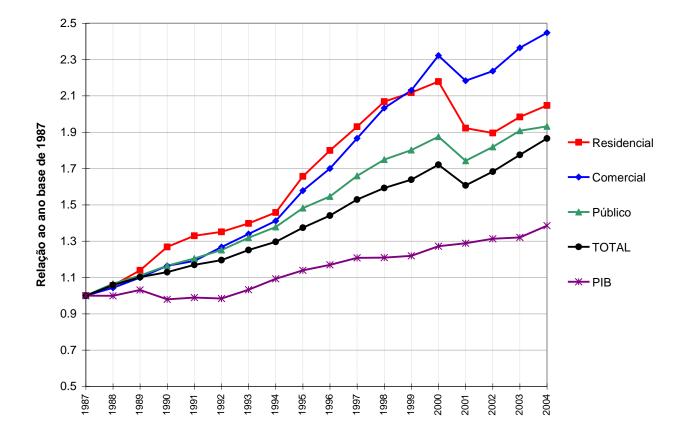
Load response was fast and effective – without black-outs or brown-outs

Residential – energy savings beyond Government targets

Self-rationing - the customer decides

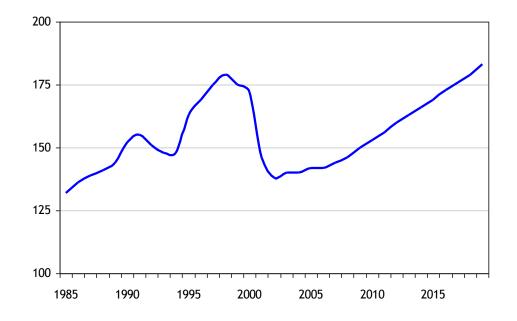

how to save energy

ACTIONS TAKEN BY CONSUMERS	TOTAL	SOUTH	CENTER	NORTH
		EAST	WEST	EAST
Swtiched off lamps	45	36	46	60
Changed lamps (mini-fluorescent)	39	36	35	45
Reduce time watching TV	31	28	31	36
Ironing - less time, on fewer clothing	23	19	22	31
Swtiched off freezer	23	27	26	15
Reduce time in the shower	22	30	24	8
Reduce use of laundry machine	14	17	11	9
Switched off electric oven & microwave	14	19	10	8
Reduced use of refrigerator	12	11	13	13
Switched off refrigerator	12	12	9	11
Shower with cold water	12	11	18	12
Reduced electric oven & microwave	9	14	8	3
Switched off stereo equipment	8	8	7	9
Reduced use of stero equipment	7	6	7	8
Switched of TV	7	7	7	6
Switched off laundry machine	7	8	6	5
Did not use air conditioning	6	4	9	10
Reduced use of freezer	6	7	7	6
Reduced use of computer	6	6	6	6
Switched off VCR	6	8	4	4


Industrial production grew in the period

Consumo de energia elétrica X produção física Índices = 100 em dez/99

GDP was not materially impacted


Change in behavior and residual impact

- Average individual consumption = 1994 levels
- Average consumption pre and post rationing
 SE from 199 kWh/mo to 145 kWh/mo
 NE from 113 kWh/mo to 85 kWh/mo
- 91% of households changed consumption habits during rationing – from those 65% still maintain savings
- Energy efficiency became part of the decision making process to buy appliances
 - 8% before crisis
 - 58 % after crisis

Changes in Customer Behavior had a lingering effect

Household Consumption in Brazil (kWh per month)

A quick comparison Ca. vs. Br.

	California (1)	Brazil (2)	
Shocks Shortage	Supply and Demand Capacity (Energy)	Supply Energy only	
Action	20/20	Cap (and Trade)	
Mandate Load Shedding?	Voluntary Some	Compulsory No	
Duration	11/00 - 05/01	6/01 - 02/02	
Government Action Cost of Demand Response	Slow US\$276/kW-yr	Fast US\$7/MWh	
Second Best	US\$55/KW-yr (peaking) or shedding	US\$150/MWh or shedding (US\$300/MWh)	
Metering Deployment	No	No	

(1) Sweeney, J. *The California Electricity Crisis*. Stanford - CA. The Hoover Institution Press, 2002.

(2) Maurer, Pereira, Rosemblatt. *Implementing Power Shortages in a Sensible Way: Lessons Learned and International Best Practices*. Washington DC. ESMAP. Report 305/05. 2005.

Can this experience be replicated in other places?

- There is not a one case fits all
- The mechanism in Brazil had some "bells and whistles" but even a very simple scheme may produce significant results
 - Initial quota assignment (TECC-like)
 - Deviations priced at SRMC (e.g. cost of emergency generation)
- Brazil was an energy constrained case capacity constrained systems require different approaches
 - Price signals should be conveyed on a time basis
 - But technology is seldom in place advanced metering, two-way communication, load control
 - Pricing schemes more sophisticated than TOU e.g. CPP, RTP
- Fuel switching or GHG emissions were not an issue
- If those are also issues to consider, then a combination of other approaches
 - Green certificates (possibly tradable)
 - Standard Offers (ala South Africa)
 - Energy Efficiency Auctions

The Day (s) after (I)...

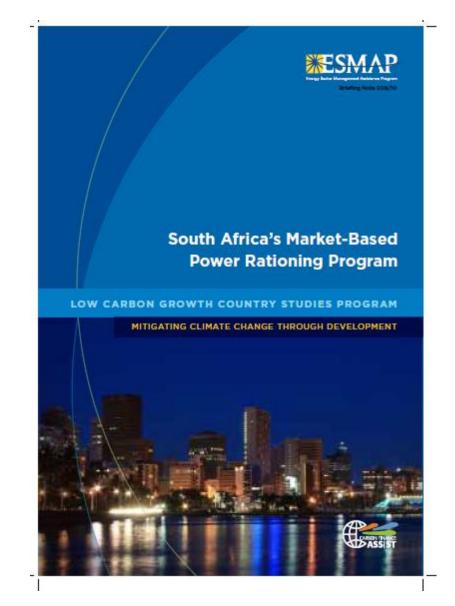
- The crisis impacted the entire sector and resulted in significant financial losses for discos and gencos
- Success had a financial price bonuses exceeded penalties, resulting in financial imbalance
- A kind of sector "bail-out" was put in place, partially funded by BNDES and partly by future tariff increases
- Political "fall-out" in the 2002 election the opposing party used the crisis as the major element in the political debate
- Pres. Lula's administration put strong emphasis on fixing the power sector – Mrs. Rousseff, an energy expert, was appointed Minister of Mines and Energy
- The new administration started in a comfortable position, with about 8,000 firm MW of excess capacity (half due to demand response)

The Day (s) after (II)

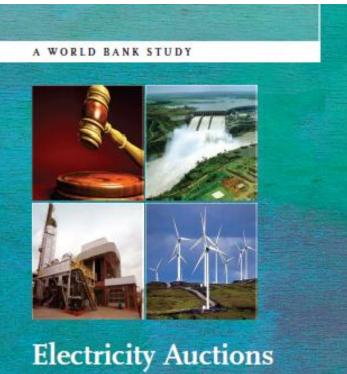
- 2003 a new power sector model was constructed
 - Making important changes
 - Building upon good things of its predecessor (1998)
- An interesting mix between central planning and market forces
 - Centralized planning was strengthened
 - BNDES has played a major role in funding the system
 - Three large hydro projects in the Amazon (and T links) being built
 - Electricity auctions were introduced to foster competition both "in" and "for" the market
 - Auctions spurred investments in renewables now wind is "in-the-money"
 - Tariff increases and more retail competition (almost 40% of demand)
- No more energy crisis but two short duration black-outs
- Government is now revisiting demand mechanisms to make the system more affordable and reliable
 - First National Energy Efficiency Plan approved
 - Demand side bidding and energy savings auctions being considered
 - Smart grids and smart metering (possibly with load control)

Where to learn more?

Implementing Power Rationing in a Sensible Way: Lessons Learned and International Best Practices



Report 305/05


August 2005

Click to LOOK INSIDE! THE CALIFORNIA ELECTRICITY CRISIS JAMES L. SWEENEY

AN OVERVIEW OF EFFICIENT PRACTICES

Luiz T. A. Maurer Luiz A. Barroso

THE WORLD BANK