

Economic Analysis of Residential Energy Efficiency Improvements

Jim Scheer

Energy Modelling Group SEAI

January, 2013

- CBA vs. macro-economic modelling
- Overview of Residential sector CBA
- Need for both approaches...

CBA

- Individual policy analysis
- Bottom-up, disaggregated

 'Simple' understandable method

Integ	ratior	า
mog	lanoi	

Macro-modelling

- Programme monitoring and evaluation
- Economy wide interactions
- Top-down, aggregated
- Understandable
 method?

Clear, targeted messages

Trade-off, micro vs. macro approaches

SEC

ENERGY AUTHORITY

	Micro (bottom-up)	Macro (top-down)
General structure	Informal, flexible, use of	Formal, complex, objective
	subjective elements	based on behavioural theory
Level of disaggregation	High (individual projects)	Low (aggregated)
Use of theory	Weak (judgemental)	Strong (macroeconomics)
Model calibration	Judgemental	Scientific/econometrics
Policy impacts	Implicit/ranking	Explicit/quantified
Treatment of externalities	Usually ignored	Usually explicitly modelled
Source: GEFRA and ESRI, 2005 (table 1.1)		
Getting <i>(</i> better!		

Focus: Residential grant scheme CBA

- Residential grant scheme for insulation, heating supply and controls
 - Over €420m spent 2009-2012
 - €147m from exchequer (34%)
 - Over 140,000 homes upgraded
 - Around €3000 per dwelling (shallow-medium)
- Data collected (per dwelling, disaggregated)
 - Technologies installed
 - Costs of installation
 - Grant levels

Costs	Data	Source
Exchequer grants	Value of grant	Scheme database
Private expenditure	Calculated based on average % grant	Scheme database
Administration/salary	Calculated value	SEAI expenditure

Benefits	Data	Source
Energy Savings	Engineering calculation + billing analysis	SEAI modelling and empirical study
Value of CO ₂ emissions reduced	Based on emissions factors and carbon price	SEAI data, Department of Finance CBA Guidelines
Value of other pollutants (PM, SOx, NOx)	BeTa MethodEx (2007)	European Commission DG Research

Results

Survey feedback

- In addition to energy savings participants reported:
 - Improved comfort and wellbeing (health)
 - Reduced dampness
 - Perceived increase in value of dwelling
 - (reduced use of secondary electric heating)

Beyond energy and emissions

	Benefits not covered	Treatment in CBA	Alternative treatment
1	Improved householder comfort	Savings estimates reduced	Include in CBA as benefit on willingness-to-pay basis
2	Improved health through enhanced household living environment	Not included – lack of data	Include in CBA using1. International data/benchmarks?2. New Irish data
3	Improved asset values	Not included	New study available
4	Employment (supply, installation and project management)	Not 'valued' – Gross estimates	Macro-model
5	Broader economic impacts of sustainable energy investment	Not included in CBA	Macro modelImport dependence, macro- rebound, capital flows, multipliers

Residential final demand

CBA informing Macro-modelling

macro-rebound etc.

million building upgrades

across the residential, commercial and public sectors by 2020

Refining the message

- Net societal benefit of
 - Net societal benefit around €12 billion
- of around €6 billion
 Energy savings, comfort
 - and hera 1510 00 potements
- Over 5000 teet joers anealed
 - 8,000 GWh
- 7,000 GWh and 1.9Mt CO₂
 2.3 Mt CO₂ after macro-rebound

- Not possible to simply add up a bunch of CBA's for overall impacts
- CBA's can miss some important pieces of information
- integrating macro-modelling avoids the loss of important information in the process of evaluation

Method integration

Effectiveness Efficiency Desirable policy impacts

Jim Scheer jim.scheer@seai.ie

DEVELOPMENT FUND

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

The Sustainable Energy Authority of Ireland is financed by Ireland's EU Structural Funds Programme co-funded by the Irish Government and the European Union.

References

Available at:

http://www.seai.ie/Publications/Energy Modelling Group/Energy Modelling Group Publications.html

- Economic Analysis of Residential and Small Business Energy Efficiency Measures
- Better Energy Homes Impact Report Billing Analysis

Also:

 An Integrated Micro-Macro (IMM) approach to the evaluation of large-scale public investment programmes: The case of EU Structural Funds, GEFRA and ESRI (June, 2005) <u>http://www.esri.ie/pdf/WP167_An%20Integrated%20Micro.pdf</u>

