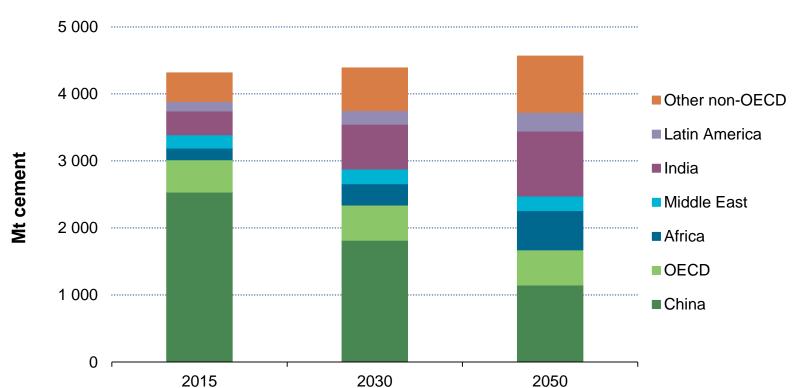


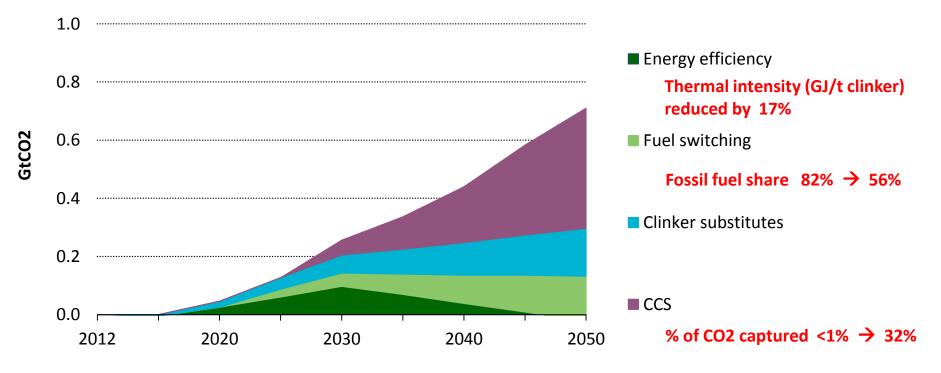
www.iea.org


Energy Technology Perspectives for the Global Cement Industry

<u>EBRD side-event</u>: Material Impact of Low Carbon Pathways, Deep Decarbonisation Technologies and Policy Dialogue

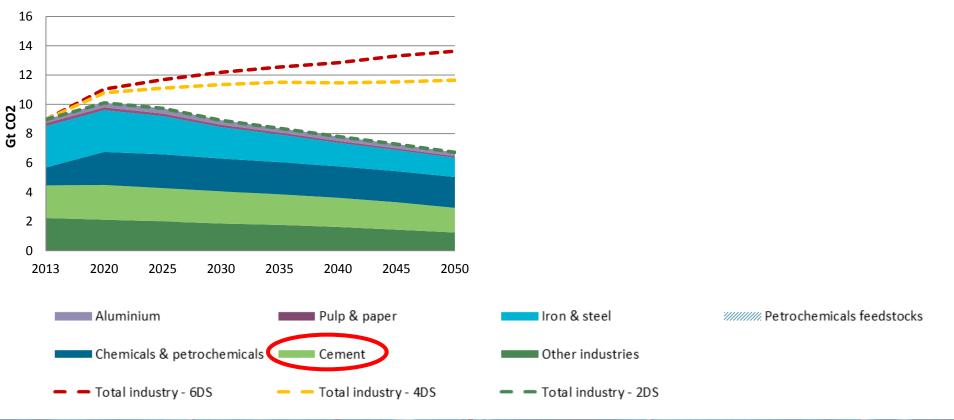
Eric Masanet, PhD Energy Technology Policy Division International Energy Agency

As production expands in emerging and developing economies...


ETP 2016 cement production estimates by region

While global cement demand flattens, production capacity ETP shifts to India, Africa, and other non-OECD economies 2016

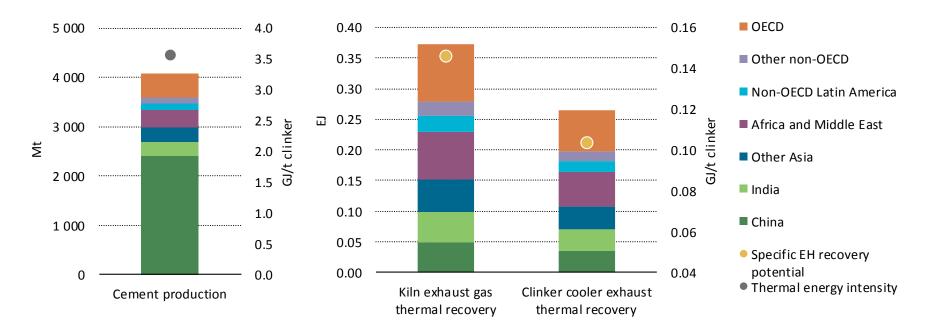
... adoption of BATs and innovative processes can achieve the 2DS ...


The 2DS requires a mix of technologies, and significant decoupling of CO2 emissions from energy use

ETP 2016

... but further decarbonisation is needed for a well-below 2DS pathway.

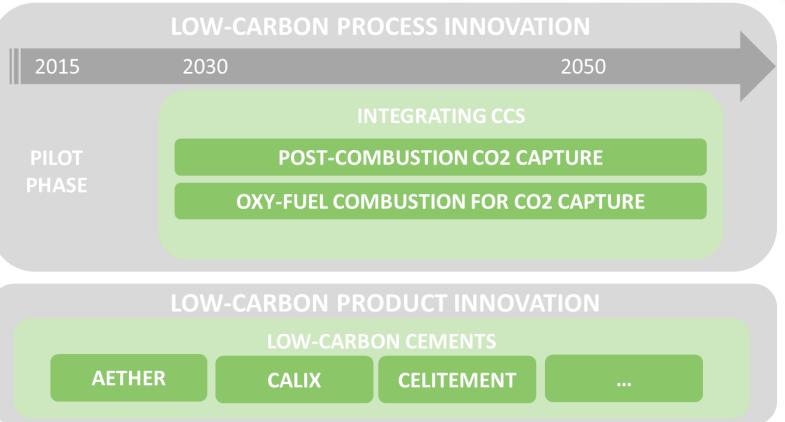
Global direct industrial CO2 emissions


Decarbonizing energy-intensive industries is critical, requiring accelerated technology and policy innovation

ETP 2016

While expanding spatial boundaries can achieve greater energy savings ...

Global excess heat recovery technical potential – Cement



NOTE: IEH technical assessment based on 2013 stock data. Specific energy savings in GJ/t cement refer to global dry- process-based clinker production. IEH estimates refer to a dry-process kiln with five-stages of pre-heater and pre-calciner and to raw materials with a moisture content of 2-6% (low-range).

Globally, 6% of the final energy use in cement making could be technically recovered

... more innovative low-carbon technology options are crucial ...

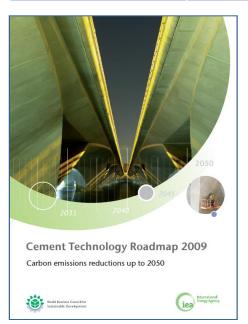
Note: This slide is not intended to provide an exhaustive list. Sketch is not at scale and time milestones are just illustrative.

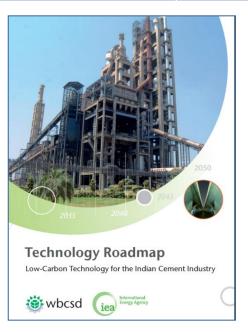
Low-carbon cement technology RD&D is promising, ETP but progress must be accelerated 2015

... and greater investment and policy support is needed to accelerate progress.

www.iea.org

R&D - oxyfuelling, gas cleaning:	R&D - oxyfuelling, gas cleaning: develop		R&D - oxyfuelling, gas cleaning: C.A. energy use to fall to 2.2 GJ/t			
# CCS pilot plant	oxyfuelling and chemical looping			Deployment: 50-70 cement kilns with CCS	Deployment: 100-200 cement kilns with CCS	Deployment: 220-430 cement
	Demonstration of 2 chemical absorption demonstration plants Mitigation costs USD/tCO ₂ cement (post combustion/ oxyfuelling): 125/na	Demonstration 3 oxyfuel demos,	Deployment: all large new kilns with CCS Mitigation costs USD/tCO ₂ cement (post combustion/oxyfuelling): 100/60	Mitigation costs USD/tCO2 cement (post combustion/oxyfuelling): 100/	/50	kilns with CCS Mitigation costs USD/tCO ₂ cement (post combustion, oxyfuelling): 75/4
		3 chemical looping demos	Commercial use of membrane technology	Gt captured: 0.11-0.16 Gt; % CO ₂ captured: 10-12%		Gt captured: 0.5-1.0 Gt; % CO ₂ captured: 40-45%
Research and develop	oment (R&D) Demonstration	Dep	ployment	Commercialisation		


2010	2020	2030	2040	2050				
CCS is currently not on track to meet IEA Cement Technology								
Road	dmap targets (200)9)						


- 3 oxy-fuel demos & 3 chemical looping demos by 2020
- Scaling up of CCS and significant cost reductions in oxy-fuelling by 2030; widespread deployment by 2040
- Further improvements in cost and deployment through 2050

IEA Roadmaps: action plans to accelerate industrial energy transitions

2009	2013	2015	2017
 ✓ <u>Global</u> <u>Cement</u> 	 ✓ India Cement ✓ Chemical catalysis ✓ CCS 	✓ Hydrogen	 ✓ Brazil Cement ✓ India Cement Update Tentative: Global Cement Update Iron and steel

- Goal to achieve
- Milestones to be met
- Gaps to be filled
- Actions to overcome gaps and barriers
- What and when things need to be achieved

Available at http://www.iea.org/roadmaps/

Priorities for the global cement industry

- Achieving BAT performance is critical, while accelerating lowcarbon innovations is essential
 - BAT includes energy and resource efficiency (e.g., clinker ratios)
 - The pace of CCS deployment must increase
 - Low-carbon cements can be a major breakthrough
- Biomass/waste fuels can reduce emissions, but supplies may be uncertain
- **Expanding boundaries of influence can create new opportunities**
 - Waste heat recovery for local plants/buildings
 - Materials efficiency in end use product applications

Multiple aspects of strong policy support are needed:

- Long-term energy and climate policy signals
- Increased support for technology RD&D
- Low-carbon and energy efficiency labels and standards

The IEA works around the world to support an accelerated clean energy transition that is

enabled by real-world SOLUTIONS supported by ANALYSIS and built on DATA