

www.iea.org

#### Modelling of very low Carbon Transport Pathways

Transport Day COP 22, Marrakech, Morocco 12 November 2016

Jean-François Gagné Energy Technology Policy Division Head International Energy Agency

#### IEA supports the low-carbon transition



- **IEA: the global energy authority**
- Part of the OECD family
- **Founded in 1974 to co-ordinate a response to oil supply disruptions**
- **2015: IEA Modernisation grounded on three main pillars** 
  - global energy security
  - energy cooperation and global dialogue
  - promoting an environmentally sustainable energy future
- Build on a decade of analysis on what we need to do to keep temperature increase below 2°C
- Now developing analysis on faster and deeper energy-sector decarbonisation





### Sizing the scale of the challenge... ... and its solutions



Contribution of technology area to global cumulative CO<sub>2</sub> reductions



The carbon intensity of the global economy can be cut by ETP two-thirds through a diversified energy technology mix 2016

# But the challenge increases to get from 2 degrees to "well below" 2 degrees



Energy- and process-related  $CO_2$  emissions by sector in the 2DS



Industry and transport account for 75% of the remaining emissions in the 2DS in 2050.

ETP 2016 • OECD/IEA, 2016

#### Systems thinking and integration





Today's energy system paradigm is based on a unidirectional <u>energy</u> delivery philosophy

#### Systems thinking and integration





A sustainable energy system is a smarter, multidirectional and integrated system that requires long-term planning for <u>services</u> delivery

#### **ETP modelling framework**





ETP model finds cost-effective investment and operation of energy technologies to meet energy demands from now to 2050

#### Looking at interactions between energy technologies



## Understanding transport impacts: Mode matters







Transport is the least diversified energy demand sector ETP Solutions need to be adapted transportation modes 2016

## Passenger transport activity: Mode matters



ETP

National passenger transport activity (pkm) in 2015, by mode



While activity is almost 50% higher in China than in the US...

#### Passenger transport energy use: Mode matters





#### While China's activity is almost 50% higher than in the US... Its total energy use is only a bit more than half that of the US

#### Need to decouple activity & emissions Avoid/shift, vehicle efficiency, low carbon fuels



GHG Emissions in the 2DS, 4DS, and 6DS – 2010 to 2050



OECD transport emissions have peaked, while Non-OECD transport emissions can be brought back to current levels in 2050



#### Transport energy demand projections Policy and technology have great potential



Global Energy for Transport in 2015 & in 2050 in the ETP Scenarios



2DS sees a net global decline in transport energy demand, but not in all regions

#### **GHG emission projections** Current ETP scenarios - Transport







Moving below 2DS reductions in transport will require ETP action in all transport modes 2016









#### **Maritime transport**





Preliminary results of updated projections (higher 4DS, stabilization in 2DS)

2050 4DS-2DS emission cuts over 4DS baseline: 63% **MEDIUM-HIGH** 



# Aviation

"the only global industry-wide body to bring together all aviation industry players so that they can speak with one voice"

#### Stabilise

From 2020, net carbon emissions from aviation will be capped through carbon neutral growth.

50%

By 2050, net aviation carbon emissions will be half of what they were in 2005.

Source: http://www.atag.org/facts-and-figures.html

#### Cross-cutting Technologies

- Biofuels
- Hydrogen

#### Non-Technology Options

- Modal Shifts
- Urban Design/Logistics

IEA 2DS reflects ATAG goals without taking into account of any offset

2050 4DS-2DS emission cuts over 4DS baseline: 78% HIGH



#### Implementing actions

| Scope    | Policy category                                                | Impact      |                       |                     |
|----------|----------------------------------------------------------------|-------------|-----------------------|---------------------|
|          |                                                                | Avoid/Shift | Vehicle<br>efficiency | Low carbon<br>fuels |
| Local    | Pricing (congestion charges, tolls parking fees)               |             | Possible              |                     |
|          | Regulatory (access & parking restrictions, low emission zones) |             | Possible              | Minor               |
|          | Public transport investments                                   |             | Possible              |                     |
|          | Compact city                                                   |             |                       |                     |
| National | Fuel taxation                                                  |             |                       | Possible            |
|          | Fuel economy regulations                                       |             |                       | Possible            |
|          | Vehicle taxation, feebates                                     | Possible    |                       | Possible            |
|          | Low carbon fuel standards                                      |             |                       |                     |
|          | Alternative fuel mandates                                      |             |                       |                     |
|          | RD&D support                                                   |             |                       |                     |

## Sustainable Transport Systems analysis: the IEA Mobility Model and ETP



- Foundation of transport-related analysis in the IEA
- Projections to 2050+, 29 global regions (including most of G20), all transportation modes except pipelines
- Assess urban and non-urban activity, energy use, emissions (GHG, pollutants), infrastructure and materials demand
- Shared with OECD Directorates (TAD), ITF



Developed in the framework of a partnership with major industrial and governmental stakeholders, some academic institutions and NGOs (MoMo partnership)



## Sustainable Transport Systems analysis: the IEA Mobility Model and ETP





## IEA data coverage and transparency – Understanding energy use patterns



Fuel use in Argentina



## IEA data coverage and transparency – Understanding energy use patterns



Fuel use in China





## The IEA works around the world to support an accelerated clean energy transition that is

## enabled by real-world SOLUTIONS supported by ANALYSIS and built on DATA





#### Explore the data behind ETP





## www.iea.org/etp

www.iea.org/statistics