Transport Models as Climate Policy Evaluation Tools

COP 22, Marrakech, Morocco
12 November 2016

Jean-François Gagné
Energy Technology Policy Division Head
International Energy Agency
IEA supports the low-carbon transition

IEA: the global energy authority

- Part of the OECD family
- Founded in 1974 to co-ordinate a response to oil supply disruptions
- 2015: IEA Modernisation grounded on three main pillars
 - global energy security
 - energy cooperation and global dialogue
 - promoting an environmentally sustainable energy future
- Build on a decade of analysis on what we need to do to keep temperature increase below 2°C
- Now developing analysis on faster and deeper energy-sector decarbonisation
Sizing the scale of the challenge... ... and its solutions

The carbon intensity of the global economy can be cut by two-thirds through a diversified energy technology mix.
But the challenge increases to get from 2 degrees to “well below” 2 degrees.

Energy- and process-related CO₂ emissions by sector in the 2DS

Industry and transport account for 75% of the remaining emissions in the 2DS in 2050.
Systems thinking and integration

Today’s energy system paradigm is based on a unidirectional energy delivery philosophy
A sustainable energy system is a smarter, multidirectional and integrated system that requires long-term planning for services delivery.
ETP model finds cost-effective investment and operation of energy technologies to meet energy demands from now to 2050
Understanding transport impacts: Mode matters

Well-to-wheels GHG emissions in 2015, by mode

Transport is the least diversified energy demand sector

Solutions need to be adapted transportation modes
Passenger transport activity: Mode matters

National passenger transport activity (pkm) in 2015, by mode

While activity is almost 50% higher in China than in the US...
Passenger transport energy use: Mode matters

National passenger transport energy use in 2015, by fuel

While China’s activity is almost 50% higher than in the US... Its total energy use is only a bit more than half that of the US
Need to decouple activity & emissions
Avoid/shift, vehicle efficiency, low carbon fuels

GHG Emissions in the 2DS, 4DS, and 6DS – 2010 to 2050

OECD transport emissions have peaked, while Non-OECD transport emissions can be brought back to current levels in 2050.
Transport energy demand projections

Policy and technology have great potential

Global Energy for Transport in 2015 & in 2050 in the ETP Scenarios

2DS sees a net global decline in transport energy demand, but not in all regions
Moving below 2DS reductions in transport will require action in all transport modes.
IEA 2DS level of ambitions – How can we move beyond?

Cars and LCVs

- **2DS**
- **4DS**

2050 4DS-2DS emission cuts over 4DS baseline: **62%**

2-3 Wheelers

- **2DS**
- **4DS**

2050 4DS-2DS emission cuts over 4DS baseline: **82%**
IEA 2DS level of ambitions – How can we move beyond?

Trucks

- **2DS**
- **4DS**

- **Gasoline ICE** (urban)
- **Diesel ICE** (urban)
- **CNG/LPG** (urban)
- **Hybrids** (urban)
- **Plug-in electric** (urban)
- **Electric** (urban)
- **Fuel cell** (urban)

2050 4DS-2DS emission cuts over 4DS baseline: **36%**

Maritime transport

- **Avoided demand**
- **Larger ships**
- **High efficiency: new ships**
- **High efficiency: Retrofits**
- **Switching to LNG (25% by 2050)**
- **Switching to biofuel (25% by 2050)**

Preliminary results of updated projections (higher 4DS, stabilization in 2DS)

2050 4DS-2DS emission cuts over 4DS baseline: **63%**

© OECD/IEA, 2016
IEA 2DS level of ambitions – How can we move beyond?

Aviation

“the only global industry-wide body to bring together all aviation industry players so that they can speak with one voice”

Stabilise

From 2020, net carbon emissions from aviation will be capped through carbon neutral growth.

50%

By 2050, net aviation carbon emissions will be half of what they were in 2005.

IEA 2DS reflects ATAG goals without taking into account of any offset

2050 4DS-2DS emission cuts over 4DS baseline: **78%**

Cross-cutting Technologies

- Biofuels
- Hydrogen

Non-Technology Options

- Modal Shifts
- Urban Design/Logistics
Implementing actions

<table>
<thead>
<tr>
<th>Scope</th>
<th>Policy category</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avoid/Shift Vehicle efficiency Low carbon fuels</td>
</tr>
<tr>
<td>Local</td>
<td>Pricing (congestion charges, tolls parking fees)</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Regulatory (access & parking restrictions, low emission zones)</td>
<td>Possible Minor</td>
</tr>
<tr>
<td></td>
<td>Public transport investments</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Compact city</td>
<td>None</td>
</tr>
<tr>
<td>National</td>
<td>Fuel taxation</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Fuel economy regulations</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Vehicle taxation, feebates</td>
<td>Possible Possible</td>
</tr>
<tr>
<td></td>
<td>Low carbon fuel standards</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Alternative fuel mandates</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>RD&D support</td>
<td>None</td>
</tr>
</tbody>
</table>
Sustainable Transport Systems analysis: the IEA Mobility Model and ETP

- Foundation of transport-related analysis in the IEA
- Projections to 2050+, 29 global regions (including most of G20), all transportation modes except pipelines
- Assess urban and non-urban activity, energy use, emissions (GHG, pollutants), infrastructure and materials demand
- Shared with OECD Directorates (TAD), ITF
- Developed in the framework of a partnership with major industrial and governmental stakeholders, some academic institutions and NGOs (MoMo partnership)
Sustainable Transport Systems analysis: the IEA Mobility Model and ETP

- **ETP uses ASIF (activity–structure–intensity–fuel) methodology**
 - Activity = Distance travelled
 - Structure = Vehicle Stock
 - Intensity = Fuel Economy

Activity: Distance travelled
Structure: Vehicle Stock
Intensity: Fuel Economy
IEA data coverage and transparency – Understanding energy use patterns

Fuel use in Argentina

Diagram showing trends in road transport energy use from 1970 to 2009 for different fuel types: Energy Use (ktoe), Gasoline, Diesel, CNG, ESD official Stats.
IEA data coverage and transparency – Understanding energy use patterns

Fuel use in China

- Energy Use (ktoe)
- Gasoline
- Diesel
- CNG
- LPG
- Biogasoline
- Biodiesel
- Electricity
- ESD official Stats
- Gasoline
- Diesel
- CNG
- LPG
- Biogasoline
- Biodiesel
- Electricity

© OECD/IEA, 2016
The IEA works around the world to support an accelerated clean energy transition that is enabled by real-world SOLUTIONS supported by ANALYSIS and built on DATA.
Thank you

Explore the data behind ETP

www.iea.org/etp www.iea.org/statistics
Looking at interactions between energy technologies

- **Flexible uses in conversion sector**
 - Fuel supply
 - Fossil supply
 - Nuclear supply
 - Renewable supply
 - Electricity plants (only)
 - Fossil
 - Nuclear
 - Variable renewables
 - Dispatchable renewables
 - Public CHP & heat plants
 - Fossil
 - Renewables
 - Autoproducer CHP and heat plants
 - Fossil
 - Renewables
 - Energy storage
 - Pumped storage
 - CAES
 - District heat storage
 - Process heat storage
 - Elec. DH boilers
 - H2 electrolysis + storage

- **Technical and economic characteristics**
 - Fuel costs
 - Potential
 - Fuel demand
 - Generation mix
 - New capacities
 - Emissions
 - Electricity prices
 - Average generation costs

- **Demand side management**
 - Transport DSM
 - Rail
 - EV/PHEV
 - Buildings DSM
 - Elec. appliances
 - Elec. water boiler + storage
 - Heat pumps
 - Industry DSM
 - Chloralkali electrolysis
 - Aluminium electrolysis
 - Electric arc furnace
 - Compressed air

- **Load curves**
 - Electricity and heat demands