

Transport Models as Climate Policy Evaluation Tools

COP 22, Marrakech, Morocco 12 November 2016

Jean-François Gagné
Energy Technology Policy Division Head
International Energy Agency

IEA supports the low-carbon transition

IEA: the global energy authority

- Part of the OECD family
- Founded in 1974 to co-ordinate a response to oil supply disruptions
- 2015: IEA Modernisation grounded on three main pillars
 - global energy security
 - energy cooperation and global dialogue
 - promoting an environmentally sustainable energy future

- Build on a decade of analysis on what we need to do to keep temperature increase below 2°C
- Now developing analysis on faster and deeper energy-sector decarbonisation

Sizing the scale of the challenge... ... and its solutions

Contribution of technology area to global cumulative CO₂ reductions

The carbon intensity of the global economy can be cut by two-thirds through a diversified energy technology mix

But the challenge increases to get from 2 degrees to "well below" 2 degrees

Energy- and process-related CO₂ emissions by sector in the 2DS

Industry and transport account for 75% of the remaining emissions in the 2DS in 2050.

Systems thinking and integration

Today's energy system paradigm is based on a unidirectional <u>energy</u> delivery philosophy

Systems thinking and integration

A sustainable energy system is a smarter, multidirectional and integrated system that requires long-term planning for <u>services</u> delivery

ETP modelling framework

ETP model finds cost-effective investment and operation of energy technologies to meet energy demands from now to 2050

Understanding transport impacts: Mode matters

Well-to-wheels GHG emissions in 2015, by mode

Passenger transport activity: Mode matters

National passenger transport activity (pkm) in 2015, by mode

While activity is almost 50% higher in China than in the US...

Passenger transport energy use: Mode matters

While China's activity is almost 50% higher than in the US...
Its total energy use is only a bit more than half that of the US

Need to decouple activity & emissions Avoid/shift, vehicle efficiency, low carbon fuels

GHG Emissions in the 2DS, 4DS, and 6DS – 2010 to 2050

OECD transport emissions have peaked,
while Non-OECD transport emissions can be brought
back to current levels in 2050

Transport energy demand projections Policy and technology have great potential

Global Energy for Transport in 2015 & in 2050 in the ETP Scenarios

2DS sees a net global décline in transport energy demand, but not in all regions

GHG emission projections Current ETP scenarios - Transport

Moving below 2DS reductions in transport will require ETP action in all transport modes 2016

© OECD/IEA, 2016

HIGH

Switching to biofuel (25% by

2050)

2050

2040

2030

Maritime transport

2020

0.0

2010

Preliminary results of updated projections (higher 4DS, stabilization in 2DS)

2050 4DS-2DS emission cuts over 4DS baseline: **63% MEDIUM-HIGH**

Aviation

"the only global industry-wide body to bring together all aviation industry players so that they can speak with one voice"

Stabilise

From 2020, net carbon emissions from aviation will be capped through carbon neutral growth.

50%

By 2050, net aviation carbon emissions will be half of what they were in 2005.

Source: http://www.atag.org/facts-and-figures.html

IEA 2DS reflects ATAG goals without taking into account of any offset

2050 4DS-2DS emission cuts over 4DS baseline: **78%**

HIGH

- Cross-cutting Technologies
 - Biofuels
 - Hydrogen
- Non-Technology Options
 - Modal Shifts
 - Urban Design/Logistics

Implementing actions

Scope	Policy category	Impact		
		Avoid/Shift	Vehicle	Low carbon
			efficiency	fuels
Local	Pricing (congestion charges, tolls parking fees)		Possible	
	Regulatory (access & parking restrictions, low emission zones)		Possible	Minor
	Public transport investments		Possible	
	Compact city			
National	Fuel taxation			Possible
	Fuel economy regulations			Possible
	Vehicle taxation, feebates	Possible		Possible
	Low carbon fuel standards			
	Alternative fuel mandates			
	RD&D support			

Sustainable Transport Systems analysis: the IEA Mobility Model and ETP

- Foundation of transport-related analysis in the IEA
- Projections to 2050+, 29 global regions (including most of G20), all transportation modes except pipelines
- Assess urban and non-urban activity, energy use, emissions (GHG, pollutants), infrastructure and materials demand
- Shared with OECD Directorates (TAD), ITF

 Developed in the framework of a partnership with major industrial and governmental stakeholders, some academic institutions and NGOs (MoMo partnership)

Sustainable Transport Systems analysis: the IEA Mobility Model and ETP

IEA data coverage and transparency – Understanding energy use patterns

Fuel use in Argentina

IEA data coverage and transparency – Understanding energy use patterns

Fuel use in China

The IEA works around the world to support an accelerated clean energy transition that is

enabled by real-world SOLUTIONS supported by ANALYSIS and built on DATA

Thank you

Explore the data behind *ETP*

www.iea.org/etp

www.iea.org/statistics

Looking at interactions between energy technologies

