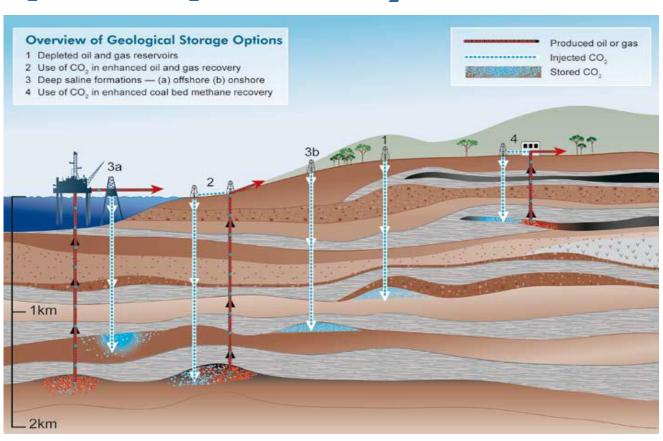


Улавливание и хранение углерода: Обзор технологий

март 2011

Цукаса Йошимура


Департамент по вопросам улавливания и хранения углерода

Международное энергетическое агентство

Xранение CO_2 (1)

Варианты хранения СО2 (Источник: ІРСС)

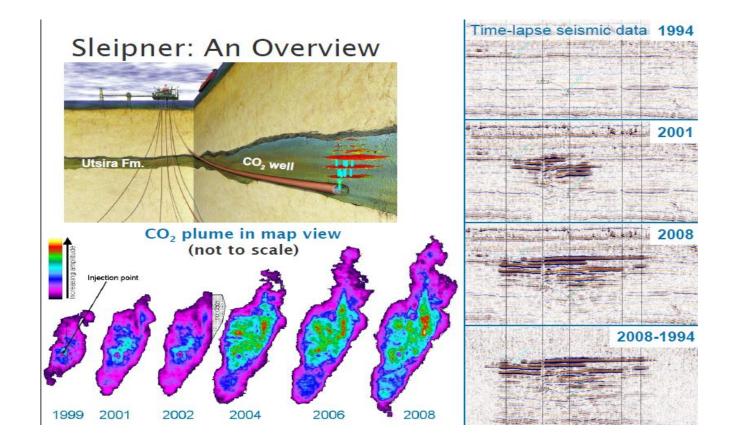
- Множество вариантов хранения
 - Повышенная нефтеотдача, глубокие соленосные формации, на истощенных нефтяных и газовых месторождениях

Xранение CO_2 (2)

Oценка ёмкости (млрд т CO_2) (Источник:GHG)

Тип хранилища	Мир (IPCC 2005)	Мир (IEA GHG)	США	Европа	Россия (IEA2008)
Глубокие соляные формации	1,000 – 10,000		3,300 – 13,000	90 – 330	2000
Истощенные газовые месторожд.	680 – 900	160	140	20 - 32	150-200
Повышение нефтеотдачи		65			

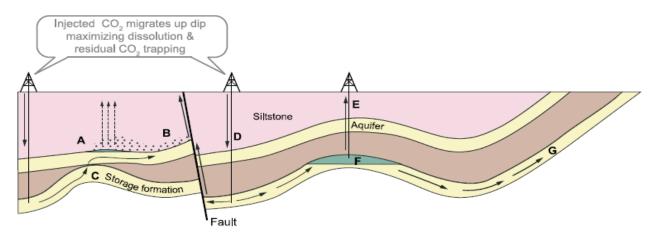
- Значительная неопределенность и разные методы оценки
- Стандадтизация оценки ёмкости хранилищ СО₂



Xранение CO_2 (3)

Мониторинг: Сейсморазведка (Источник: STATOIL)

AND STORAGE


- Различные методы мониторинга
- Руководство по мониторингу хранилищ на основе передового опыта

Xранение CO_2 (4)

Возможный механизм утечек (Источник: ІРСС)

Potential Escape Mechanisms

A. CO₂ gas pressure exceeds capillary pressure & passes through siltstone B. Free CO₂ leaks from A into upper aquifer up fault

C. CO₂ escapes through 'gap' in cap rock into higher aquifer D. Injected CO₂
migrates up
dip, increases
reservoir
pressure &
permeability of
fault

E. CO₂ escapes via poorly plugged old abandoned well F. Natural flow dissolves CO₂ at CO₂ / water interface & transports it out of closure G. Dissolved CO₂ escapes to atmosphere or ocean

Remedial Measures

A. Extract & purify groundwater **B.** Extract & purify groundwater

C. Remove CO₂ & reinject elsewhere **D.** Lower injection rates or pressures

E. Re-plug well with cement

F. Intercept & reinject CO₂

G. Intercept & reinject CO₂

- Различные механизмы утечек
- Разработка норм безопасности и критериев

Хранение СО₂: оценки, трудности, потребности

Определение основных пробелов в имеющихся данных и сведениях, дальнейшее изучение хранилищ и оценка их ёмкости

- Значительный фактор
 неопределенности в отношении
 оценок реальной ёмкости хранилищ
- Неопределенность относительно распределения этих хранилищ

Хранение CO₂:

Безотлагательно необходима дальнейшая оценка ёмкости хранилищ.

Особо важно на уровне проектов, где эта информация необходима для их дальнейшего развития.

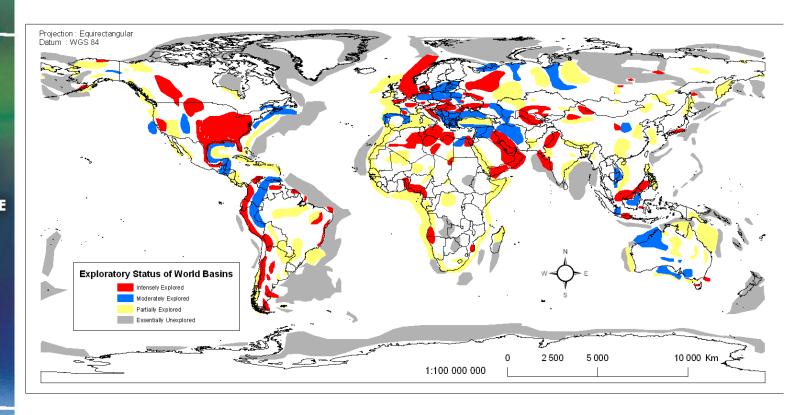
- Страны могут осознать национальный потенциал применения УХУ
- и можно будет достичь запланированного уровня внедрения УХУ в мире

Хранение CO₂:

- Создание национального атласа хранилищ
 СО₂, определение приоритетных зон для
 возможного хранения СО₂ и создание
 карты потенциальных хранилищ
 относительно источников СО₂.
- Определение основных пробелов в данных о хранилищах, а также действий и ресурсов, необходимых для их заполнения. Это должно включать выбор региональных приоритетов и программ сбора данных о хранилищах и начало разведывательных работ для получения этих данных, где это необходимо.

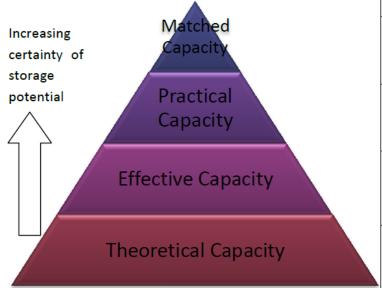
Хранение CO₂

Оценка ёмкости хранилищ в Китае (млрд т СО2)


CARBON CAPTURE AND STORAGE

© OECD/IEA 2010

Хранение СО₂: Глобальный атлас (GHG)


CARBON CAPTURE AND STORAGE

Хранение СО₂

CARBON CAPTURE AND STORAGE

Description	Oil & Gas Equivalent
- Storage matching adequate large	Proved
stationary CO ₂ sources nearby	Marketable
- Detailed study of one reservoir.	Reserves
- Considers technical, legal and regulatory, infrastructural and general economic barriers	Reserves
- The part of the theoretical capacity	Recoverable
that can be physically accessed by CO ₂ - Meets a range of geological and engineering criteria	Resources
- Limit of geologically acceptable - Full trapping capacity - Net Pore Volume	Oil In Place