

Carbon Capture and Storage: A technology overview

29 March 2011

Carbon Capture and Storage Unit
International Energy Agency

- 1. CCS in general
- 2. Capture technologies
- 3. CO2 transport
- 4. CO2 storage
- 5. Current and planned projects

CCS IS A CHAIN

Carbon Capture and Storage is a chain/group of technologies and applications that enable:

1. Capture of CO₂ from large point sources

Power plants, steel, cement, refineries, gas processing etc.

2. Its transport

Trucks, ships, pipelines

3. Storage of CO2 in geological formations

Depleted oil and gas fields, saline aquifers, EOR, ECBMR etc.

Gassco

Vattenfall

APPLICABLE CO₂ SOURCES

APPLICABLE STORAGE RESERVOIRS

- Depleted gas/oil fields
- Saline formations
- Enhanced Oil Recovery (EOR)
- Enhanced Coal-bed Methane Recovery (ECBM)

- 1. CCS in general
- 2. Capture technologies
- 3. CO2 transport
- 4. CO2 storage
- 5. Current and planned projects

CARBON CAPTURE AND STORAGE

Overview of CO₂ capture processes

Post-combustion CO₂ capture

Process Layout

Demo plants

Example: 20 MWe Mountaineer demo project, US

Key challenges & development trends

- Scale-up of capture equipment; prove commercial size application at power plants
- Low-cost absorber designs
- Develop solvents with reduced energy penalty & minimized slip to ambient

Pre-combustion CO₂ capture

Process Layout

Demo plants

Example: Planned pilot site at Buggenum, NL

Key challenges & development trends

- Prove integration of IGCC power plant with capture technology at commercial scale
- Optimize system design and process availability
- Further improve high hydrogen gas turbines

Oxy-combustion CO₂ capture

Process Layout

Demo plants

Example: 30 MWth Jänschwalde demo plant, Germany

Key challenges & development trends

- Reduce air separation energy requirement
- Long-term stability of boiler materials to recycled impurities from combustion process
- Optimize oxygen-firing combustion system

© OECD/IEA 2010

Latest IEA Study

- Reference document for latest information on CO₂ capture cost and performance
- Focus on CO₂ capture from power generation
- In-depth analysis based on major engineering studies

Available for free on IEA webpage

Key average results

Fuel (capture route)	Coal (pre-, post-, oxy-combustion)	Natural gas (post-comb.)
Efficiency penalty (%-pts.)	10 (pre-combustion vs. IGCC: 8)	8
Capital cost increase over baseline without CCS	74% (vs. PC reference)	82%

Notes: Figures are for OECD countries and include only CO2 capture and compression, but not CO2 transport and storage; capital costs are overnight costs

 Substantial variation in costs across regions and depending on fuel and power plant types

Capture Summary

- A variety of capture routes is under development:
 - Post-combustion
 - Pre-combustion
 - Oxy-combustion
- For coal-fired power generation, no capture route outperforms alternative routes
- An increase in capital costs of about 70-80% on top of the costs of the baseline power plant without CCS is estimated (this reflects the size of additional equipment required)
- Substantial variation exists in costs across regions and depending on fuel and power plant types

- 1. CCS in general
- 2. Capture technologies
- 3. CO2 transport
- 4. CO2 storage
- 5. Current and planned projects

CO₂ TRANSPORT (1): PIPELINES

- CO₂ can be transported liquid or in gaseous form, but compressed gas the main option, 10-80 Mpa pressures
- Approximately 5600km of CO₂ pipelines exist (mostly in US)
- Currently handling some 50Mt of CO₂ per year
- Existing conventional technology
- Main issues: pipeline economics, permitting, planning
- Risks: potential high concentrations in low-lying areas in case of rupture; however excellent safety record to date

Duke University

Gassco

CO2 TRANSPORT (2): SHIPS

- CO₂ in liquid or in gaseous form, liquid the main option
- Current experience: handful of food-grade CO₂
 carriers, no large CO₂ carrier fleet
- Liquid CO₂ only under 1) low-temperature and 2) pressure well-above atmospheric → pressure-type or semi-refrigerated tankers (-54°C, 6-7 bar)
- Technology similar to LNG carriers
- Risks: as in shipping overall; asphyxiation if rupture

Maersk

- 1. CCS in general
- 2. Capture technologies
- 3. CO2 transport
- 4. CO2 storage
- 5. Current and planned projects

CO2 STORAGE (1)

CO₂ storage solutions (Source: IPCC)

- A variety of storage solutions
- Operating: Deep saline formations, oil/gas fields, EOR

CO2 STORAGE (2)

Capacity Estimates (Gt CO2)(Source:GHG)

Storage Type	Global (IPCC 2005)	Global (IEAGH G)	USA	Europe	Russia (IEA2008)
DSF	1,000 – 10,000		3,300 – 13,000	90 – 330	2000
Deplete d Gas	680 – 900	160	140	20 - 32	150-200
CO2- EOR		65			

- Significant uncertainty and different estimation methods
- Standardization for CO2 storage capacity estimation

CO2 STORAGE (3)

Monitoring: Seismic Survey(Source: STATOIL)

- Various methods for monitoring
- Best practice guidelines for storage monitoring

CO2 STORAGE (4)

Potential Escape Mechanism(Source: IPCC)

CARBON CAPTURE AND STORAGE

Potential Escape Mechanisms

A. CO₂ gas pressure exceeds capillary pressure & passes through siltstone B. Free CO₂ leaks from A into upper aquifer up fault C. CO₂ escapes through 'gap' in cap rock into higher aquifer D. Injected CO₂ migrates up dip, increases reservoir pressure & permeability of fault E. CO₂ escapes via poorly plugged old abandoned well

F. Natural flow dissolves CO₂ at CO₂ / water interface & transports it out of closure G. Dissolved CO₂ escapes to atmosphere or ocean

Remedial Measures

A. Extract & purify groundwater **B.** Extract & purify ground-water

C. Remove CO₂ & reinject elsewhere **D.** Lower injection rates or pressures

E. Re-plug well with cement

F. Intercept & reinject CO₂

G. Intercept & reinject CO,

- Various potential leakage mechanisms
- Develop safety regulations and criteria

- 1. CCS in general
- 2. Capture technologies
- 3. CO2 transport
- 4. CO2 storage
- 5. Current and planned projects

CURRENT AND PLANNED PROJECTS (1)

Five large-scale projects are currently storing >5Mt CO₂ per year

CURRENT AND PLANNED PROJECTS (2)

72 other integrated large-scale projects in various stages of development

Power generation

Multiple capture facilities

- EOR (Enhanced oil recovery)
- Depleted oil and gas reservoirs
- Deep basalt formations Various/not specified

Source:

