Renewable energies for manufacturing industries

IEA Workshop
A path to the electrification
of the world industries
Christophe Crocombette (EDF)

Paris, 11-12 May, 2015

EDF, active in all major electricity businesses

Inventing the electricity of the future with a low-carbon energy mix and CO₂-free power generation

- Hydro, nuclear (France, UK, ...)
- Wind, solar (EDF Energies Nouvelles)

Biomass (EDF Polska)

Promoting energy eco-efficiency products and services

Design, set up, management, maintenance and optimization of customers' energy facilities (DALKIA, FENICE, ...)

Renewable energies for manufacturing industries : topic at the crossroad of two priorities of the company

Trends in industry's energy consumption

- Four drivers for massive electrification of industries
- For industrial heating and hydrogen, fuel and feedstock switch to electricity: a technological viewpoint
- A final focus on a disruptive tech to produce green steel
- Conclusion

1. TRENDS IN INDUSTRY'S CONSUMPTION OF ENERGY

The evolution of industry activity reflects the economic growth of the world...

World Industry, value added (constant 2005 USB\$)

Source : World Bank (ISIC divisions 10-45)

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

... and mechanically induces an increase of the total industry sector consumption...

Global industrial energy use, with 2020 and 2025 IEA 2DS scenario targets (EJ)

Source : International Energy Agency (2015), Energy Technology Perspectives 2015, OECD/IEA, Paris

... That shall carry on for several decades

Total consumption of the world industry sector according to IEA scenarios (PJ)

Source : International Energy Agency (2015), Energy Technology Perspectives 2015, OECD/IEA, Paris

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Energy-intensive sectors have gained share against non-intensive sectors since 1990 in all regions except OECD countries

Shares of industrial energy consumption: breakdown by sectors

Source : International Energy Agency (2015), Energy Technology Perspectives 2015, OECD/IEA, Paris

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Process heating is the big fish (e.g. in the US)

Process Energy = 10 350 TBtu

88 %

Process Heating Energy = 7 204 TBtu

61 %

Non Process Energy = 1 434 TBtu

12%

Process Energy (TBtu), 2010

LEGEND: Fuel Steam Electricity Applied Energy End Use Losses

Nonprocess Energy (TBtu), 2010

Source : D.O.E., Office of Energy Efficiency & Renewable Energy (from MECS 2010)

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Electricity share is expected to rise while new industrial powers undergo fast electrification of their production sites

Share of electricity in the total industrial energy consumption Evolution for China, Europe, US and India between 1990 and 2013

Source : ENERDATA

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

2. FOUR DRIVERS FOR MASSIVE ELECTRIFICATION OF INDUSTRIES

First Driver: environmental issues

- The use of electricity allow to reduce pollutants emissions at the local level (cities, valleys ...)
- The use of electricity as a substitute of fossil fuels allows industrials to shift their direct CO₂ emissions to the electricity sector
- A high carbon price should be a booster to adopt electrotechnologies connected to decarbonised electricity (renewables & nuclear)
- Relative prices of electricity with other fossil energy sources remain crucial parameters

Second Driver: ferrous metal recycling

- Recycling will reduce energy intensity, but the shift from primary steel (Blast Furnace) to secondary steel (Electric Arc Furnace) may have a huge effect on electricity demand
- The primary source of obsolete steel is vehicles which have relatively short life spans: increased demand for vehicules in developing countries should lead to a dramatic rise in the amount of scrap in the next years

Figure 7.12 > Share of recycled materials by industry

Source : Energy Energy Transitions for Industry (IEA, 2009)

Third Driver: advanced manufacturing

- Smart sensors to better monitor the process lines (e.g. in chemicals sector)
- Further automation, IT systems
- Advanced robotics & cobotics (robots working alongside people)

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Fourth Driver: additive manufacturing

- 3-D printing saves energy by eliminating production steps, using substantially less material, enabling reuse of by-products, and producing lighter products
- Now, this technology is particularly advantageous in low-tomoderate volume markets: defense, aerospace, ...
- In the future, automotive, healthcare, food industries, etc. might be revolutioned by these additive techniques
- Electricity is the energy of choice for additive manufacturing

3. FOR INDUSTRIAL HEATING AND HYDROGEN, FUEL AND FEEDSTOCK SWITCH TO ELECTRICITY:

A TECHNOLOGICAL VIEWPOINT

Among realistic fuel switch options, switching to decarbonised electricity is the most climate friendly

- Switching to less carbon intensive fuels such as replacing coal with natural gas
- Co- firing with, or switching to waste and biomass

3.1 Switching to decarbonised electricity

3.2 Switching to hydrogen (provided the hydrogen is produced via a low CO₂ process, for example using decarbonised electricity to electrolyse water)

3.1 Electrotechnologies offer a wide range of heating techniques...

Resistance and infrared heating	Production micro electronic switching circuit	High Frequency heating	Welding of plastic
Focuses	Electrolytic smelting		Several applications in food industry (drying, tempering,
	Electroslag remelting		pasteurisation)
	Graphitising of green carbon		Several applications in textile industry (drying, preheating,
	Electric glass melting		tissue treatment, fixation of dyes)
	Electrode boiler		Drying applications in paper and cardboard industry
	Heating of food	Microwave heating	Several applications in food industry (drying, pasteurisation,
Induction heating	Melting of metals		sterilisation, vacuum dehydration)
	Electric glass melting		Several applications in rubber industry (preheating before
	Welding		extrusion, rubber vulcanisation, resin polymerisation)
	Brasing		Several applications in chemical industry (vacuum drying,
	Surface treatment		sterilisation, microwave assisted chemical reactions)
			Sintering of ceramics
		Arc furnaces	Steel recycling
	<	Heat pumps	Vapour mechanical compression for heating and drying

Source : Electrification of heating and cooling (EURELECTRIC, 2011)

... Covering all manufacturing sectors and potentially all needs

- Electron beam: leather products, textile/clothing, steel, fabricated metal products, transportation equipment, aerospace, chemicals, electronics, defense equipement
- Microwave: food products, paper/wood products, pharmaceuticals, textiles, chemicals, rubber and plastics, leather, textiles, construction materials
- Plasma: primary metals, metal casting, fabricated steel products, electronics, chemicals, miscellaneous manufacturing
- Radio-Frequency: food processing, textiles, clothing, wood products, furniture, paper products, printing, rubber and plastics, chemicals, glass, fabricated metal products, machinery, electronics, transportation equipment, instrumentation, miscellaneous manufacturing
- Indirect Resistance: food processing, textiles, furniture, printing, chemicals, rubber and plastics, leather products, stone, glass and mineral products, steel, metal casting aluminum, fabricated metal products, machinery, electronic equipment, transportation equipment, instrumentation, miscellaneous manufacturing
- Industrial Process Heat Pumps: food processing, tobacco products, textiles, wood products, furniture, paper, chemicals, petroleum, rubber and plastics, electronic equipment

Focus 1: heat pumps, best technology to switch to electricity and to recover low temperature heat

- Commercially available technology: output temperature up to 100°C
- Current research to reach 140°C

Reference: IEA HPP / IETS Annex 35/13 « Application of Industrial Heat Pumps » workshop paper

French Industrial Heat Pump Developments Applied To Heat Recovery, May 2014

Low temperature heat recovery has a big potential, e.g. in France

Technical potential of heat pumps is double when reaching an output temperature of 140°C instead of 100°C

Source : EDF R&D analyses

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Focus 2: induction heating and melting, a premium solution for high tech industries

- Originally used for steel and metal production, it's now in development in many other sectors (food, paper, chemicals, ...)
 - ➡ Fast, precise, clean, easy to control
- Relevant new applications in the last decade:
 - Metallic strip heating, heating before forging
 - Local heat treatments, etc.

- Numerous R&D efforts (e.g. new configurations of coil conductors to reduce Joule losses)
- Barriers
 - Risk in changing to new process, lost production time in upgrading
 - Capital cost, benefits are insufficiently understood

Focus 3: microwave, rather a niche technology but offering peculiar properties well suited for specific needs

- Common applications are heating and drying of food, rubber vulcanization, welding of plastics, and drying textiles
 - Heating products from inside maintaining their flavors without degradation, with good organoleptics properties
- Advantages: rapid and selective heat transfer, energy efficient, speed of switching on and off, compactness of equipment...

Photo Credit : SAIREM

3.2 Electrolytic hydrogen production: a disruptive electrotechnology to save fossil feedstocks

Nowadays, water electrolysis contributes only a low fraction of the world global hydrogen production (< 5%), the rest being produced from fossil fuels by steam reforming or partial oxidation of methane and coal gasification

Intense research is conducted on that technique wich has many advantages:

- It gives no carbon emission (no dependence to hydrocarbon sources)
- ➡It produces very pure H₂
- It can be operated in small scale plants

4. A FINAL FOCUS ON A DISRUPTIVE TECH TO PRODUCE GREEN STEEL

Electrolysis may one day provide green iron...

Technology	Expected potentials for direct CO ₂ mitigation effects	Soonest expectations (from a purely technical perspective)
Top Gas Recycling Blast Furnace (ULCOS-BF)	15% without CCS 60% with CCS	Laboratory: done Pilot: done Demonstrator: tbc Deployment: > 2020 onwards
Bath smelting (HIsarna)	20% without CCS 80 % with CCS	Laboratory: done Pilot: 2011-2013 Demonstrator: 2020 Deployment: > 2030
Direct reduction (ULCORED)	5% without CCS 80% with CCS	Laboratory: done Pilot: 2013 Demonstrator: 2020 Deployment: > 2030
Electrolysis (ULCOWIN)	30% with today's electricity generation mix 98% with CO₂ free electricity generation	Laboratory: ongoing Pilot: 2020 Demonstrator: 2030 Deployment: > 2040

Source: EUROFER steel roadmap for a low carbon Europe 2050

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

Electrowinning cell demonstrator (ULCOwin, 2011)

IEA Worshop - RENEWABLE ENERGIES for MANUFACTURING INDUSTRIES – Paris, 11-12 May, 2015

5. CONCLUSION

Key findings

- Electrotechnologies and decarbonised electricity are key solutions for industry decarbonisation
- R&D efforts are intense and need to be continually supported
- Environmental reglementation and energy prices will be crucial regarding the pace of industry electrification in the world
- Heat recovery is a major concern and heat pumps should play a big role
- Energy players will have a central role in the optimisation of energy consumptions of their industrial customers

Thank you for your attention

