

REmap 2030: Renewables for manufacturing industry

Paris, 11 May, 2015

REmap 2030 - A roadmap for doubling the RE share

- In 2011, UN Secretary-General initiated the global Sustainable Energy for All (SE4ALL) initiative
- Three objectives, all to be achieved by 2030:
 - Universal energy access (rural electrification, modern forms of renewables
 - Doubling the rate of energy intensity improvements
 - Doubling the share of renewables in the global energy mix (compared to 2010 level)
- Each objective has its own hub; IRENA is the thematic hub for renewables
- 2014-2024: UN decade of Sustainable Energy for All

REmap 2030 - A roadmap for doubling the RE share

- REmap explores the potential, cost and benefits of doubling the renewables share in the global energy mix
- Technology options
 - No target setting; options characterised by their cost and potentials
 - Technology options can be combined into scenarios and translated into policy action
- Focuses on power, district heat and end-use sectors
- Coverage: **40 countries**; 80% of the global energy use
- Developed together with & validated by country experts

- Doubling the RE share to 36% in 2030 is technically achievable with existing technologies
 - Higher shares in power generation
 - More attention needed for heating and transportation fuels (biomass)
- Doubling is affordable when externalities are accounted

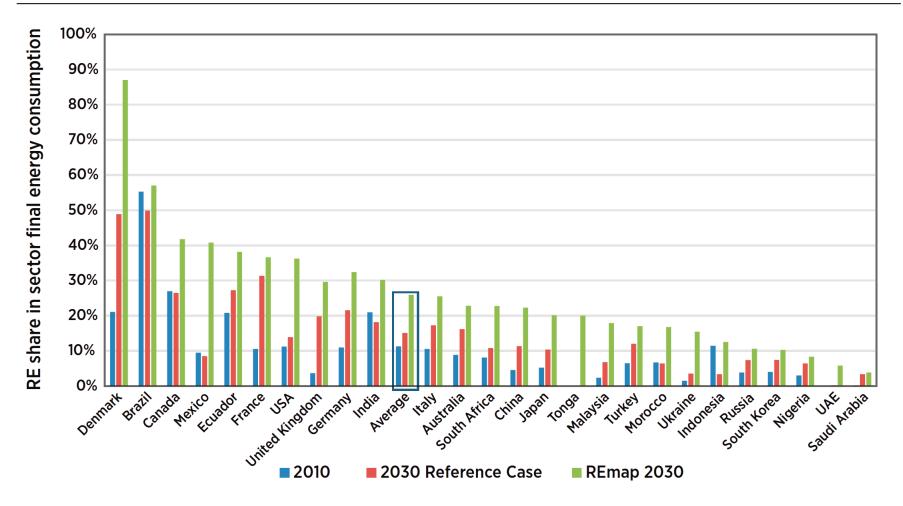
for

- However externalities are not reflected in todays prices. Many markets are distorted because of energy subsidies
- Macro-economic benefits include more jobs; economic activity; health benefits; a cleaner environment; improved energy security

• Potential exists in all countries

Global RE Use in 2030 including REmap Options

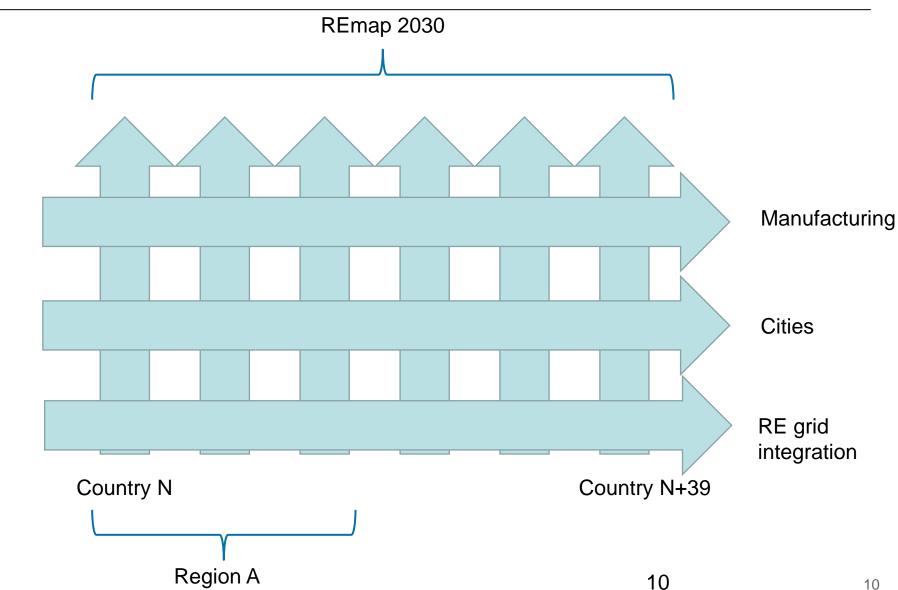
REmap 2030 – 132 EJ (final energy) 60% of total is biomass; and 20% is industry (18% biomass & 2% solar thermal) Geothermal Power <1% CSP <1% Other <1% Modern biomass Solar PV 3%replacing traditional biomass 11% Wind 11% Power sector **Biomass Heat** Industry* Power 17% 36% (40% of modern Hydropower thouse sectors renewable energy) Heat 51% 14% **Biomass Heat / Biomass Power** Transport **District Heat Buildings** 6% Fuels 13% 11% **Biogas Power** Biogas Industry / 1% Buildings* 2% **Biofuels Transport** 1% Geothermal Heat 13% Solar Thermal Heat 6 "including combined heat and 9% power (CHP) and district heat


Progress per End-Use Sector

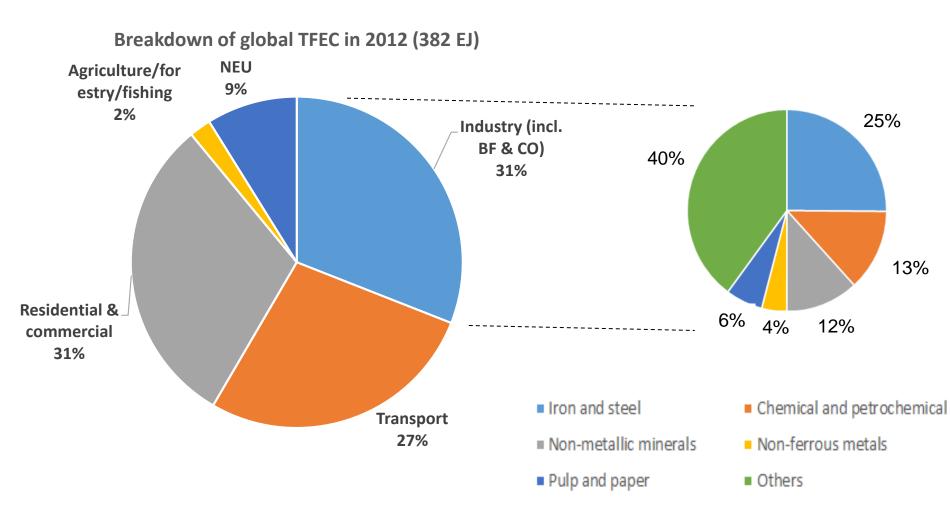
International Renewable Energy Agency

	Renewable Share of:	as % of:	2010	2030 Refer- ence	REmap 2030	RE use REmap 2030 (EJ/yr)
Industry	Heat ¹	Heat consumption	8%	9%	19%	25
	Heat & Electricity & DH ²	Sector TFEC	11%	15%	26%	51
Buildings (excluding traditional biomass)	Heat ¹	Heat consumption	12%	16%	35%	25
	Heat & Electricity & DH ²	Sector TFEC	14%	20%	38%	50
Transport	Fuels ¹	Fuel TFEC	3%	5%	15%	16
	Fuels & Electricity ²	Sector TFEC	3%	6%	17%	18
Power ³		Generation	18%	26%	44%	62
District heat (DH) ³		Generation	4%	14%	27%	5
	Modern RE (excl. traditional biomass) (see Figure 6 for the cost-supply curve which plots the development of the modern RE share)		9%	14%	27%	119
Total (as % of TFEC)	Modern + Access		18%	21%	30%	132
	Modern + Access + EE (assumes the implementation of all th	ne 3 SE4ALL objectives)			34%	
	Modern + Access + EE + "RE+"				>34%	

Options in the Manufacturing Sector


With the right policies, the renewable energy share of the manufacturing sector could more than double to 26%

Renewables in Manufacturing


REmap 2030 and technology roadmaps

Manufacturing sector energy

Source: IEA (2015)

- Projections of industrial energy use: 2010 2030 (ten world regions)
- 2) Production costs of process heat generation: 2030
- **3) Potential of renewables** (bioenergy, solar thermal, geothermal, heat pumps)
 - 1) Technical potentials, capital stock and temperature level,
 - → two scenarios: Optimistic and Realistic
 - 2) Economic potentials, comparison of process heat generation costs,
 - → two scenarios: Moderate climate policy and Ambitious climate policy
 - 3) Economically realisable potentials, comparison of economic

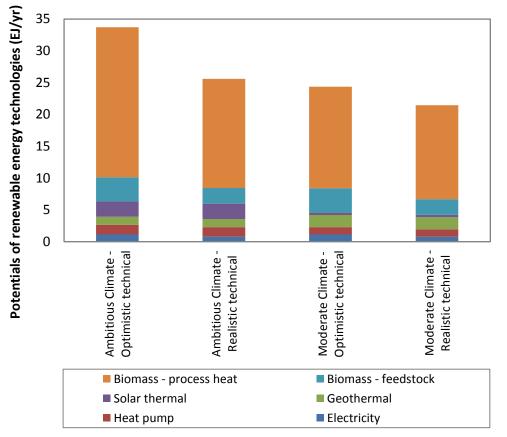
potentials with resource supply (notably for biomass)

4) Allocation of realisable potentials to different

temperature levels

Key findings (1/6) Growth and costs

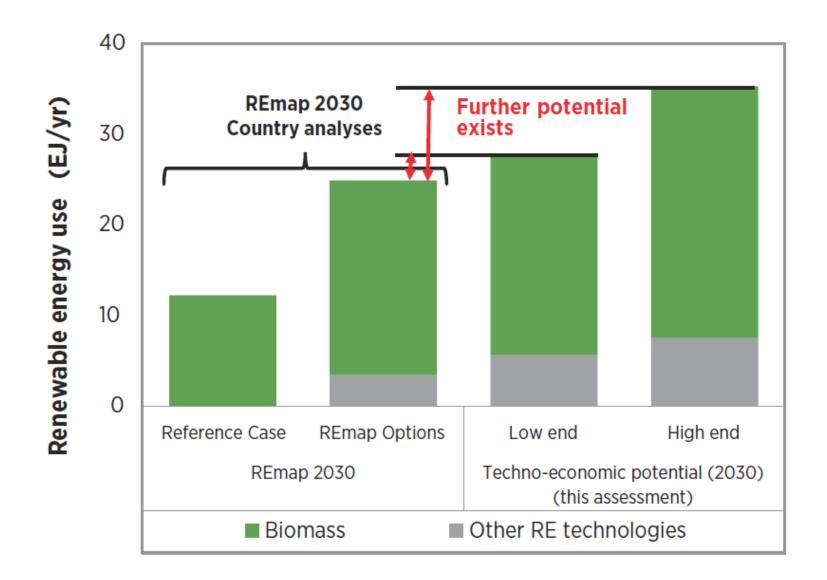
Industrial energy use growth


- Total final industrial energy use grows to >120 EJ by 2030 (excl. NEU)
- >85 EJ fossil fuels, 10 EJ combustible renewables and waste, >25 EJ electricity
- 50-60% from existing capacity, accounting for 45-50 EJ of fossil fuel use
- About half high temperature (>400 °C) process heat, the remainder roughly halved between low and medium temperature heat applications

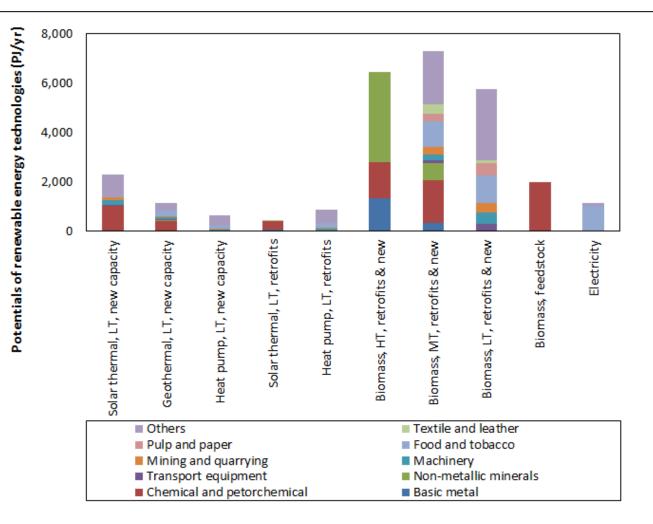
Process heat generation costs

- Fossil fuels by 2030: 15-20 USD/GJ_{th} (varies across countries: 10-35 USD/GJ_{th}, depending on temperature, energy price, fuel type, technology)
- Carbon pricing (based on WEO) adds another 4-9 USD/GJ_{th}
- Biomass residues cost-competitive worldwide 8-15 USD/GJ_{th}, energy crops only in few regions 20-35 USD/GJ_{th}
- Solar thermal cost-competitive 20-30 USD/GJ_{th} India, LAC, parts of OECD
- Geothermal and heat pumps cost-competitive 10-25 USD/GJ_{th} in most regions

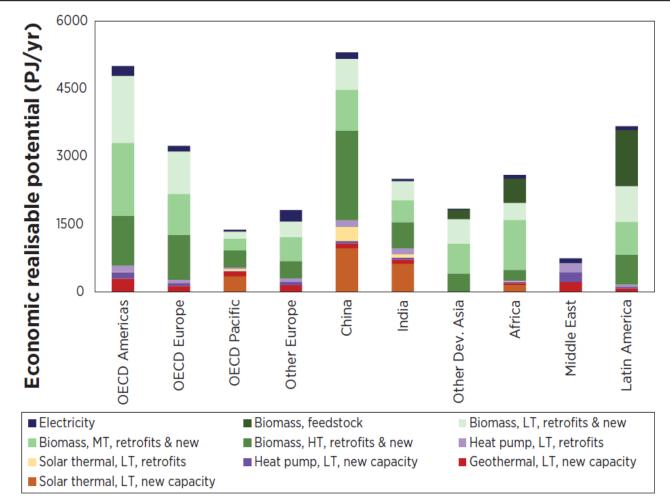
Key findings (2/6) Scenarios



- Additional RE use 19-28 EJ for the global industry by 2030,
- Low-cost biomass basis for process heat generation: 14-20 EJ (both existing & new capacity)
- Solar thermal for LT heat contributes 0.7-2.8 EJ (new cap.)
- Geothermal and heat pumps for LT heat **3 EJ** (new capacity)
- Biomass as feedstock 1-2 EJ

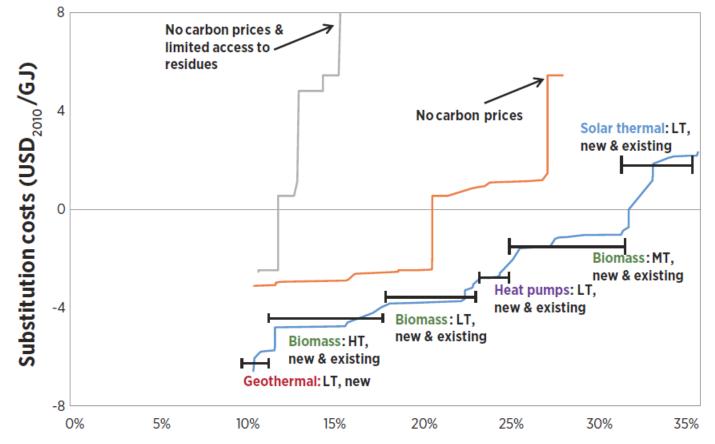

Key findings (3/6) Techno-economic potentials

Key findings (4/6) By technology


International Renewable Energy Agency

Biomass use for various applications is three-quarters of the total potential

Key findings (5/6) By region



OECD and Asian countries account for majority of the global potential

Key findings (6/6) Cost-competitiveness

Share of renewable energy in total final energy consumption (%)

Techno-economic potentials can raise RE share from 10% to 34% Without low-cost biomass feedstock, RE share is limited

Bio-based materials

	Bio-based ethylene (USD/t)	Fossil fuel-based ethylene (USD/t)	Bio-based methanol (EUR/t)	Fossil fuel-based methanol (EUR/t)	
China	1 340-2 180			100-300	
India	1 000-1 670				
Latin America	970-1 630	600-1 300	160-900		
OECD and rest of the world	1 700-3 380				

SSIRENA

Production of Bio-methanol

Technology Brief

Supporting country analysis

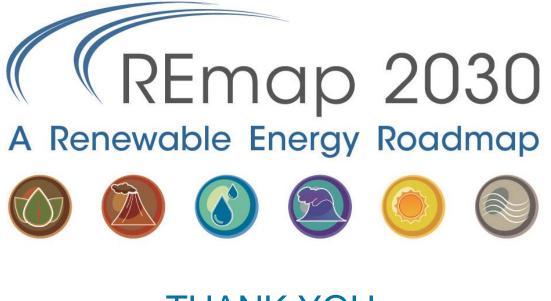
- Study closes an important gap about RE use in industry sector, and creates awareness of potential
- This techno-economic potential assessment study helps
 country dialogue with the REmap national experts
- Deploying further potentials based on assumptions with uncertainty:
 - Biomass supply potential and availability for industry sector
 - Biomass price developments (e.g. higher prices with more demand),
 - Access of industry plants to resources (large volumes biomass transport and supply, storage requirements, geothermal),
 - Process modifications (e.g. solar thermal),
 - Upfront costs (mainly for solar thermal),
 - Synergy / trade-offs with energy efficiency

Prioritisation areas

- Energy intensive sectors: largest potential
- Small and medium enterprises: >90% of all industrial plants, low absolute energy demand per plant
- Biomass: >75% of the potential for different applications, but many issues remain to be resolved
- Solar thermal systems: potentials exist, but more deployment needed
- Electrification: fuel switching and increased RE share in the power sector
- **Regional aspects:** energy pricing and climate policies, growth of industry versus availability of resources

Guiding international cooperation

	,	Agriculture and	Trade barriers for	Cascading use of	Niche markets for
Stakeholders / Activities	biomass resources	forestry sectors	biomass	biomass	bio-based
					feedstocks
Governments / policy					
makers	3.5	2.5	4.0	2.5	2.0
Industry / associations	3.5	2.0	3.5	3.3	3.3
Technology / equipment					
suppliers	1.8	1.5	1.8	3.0	3.0
Funding organisations	3.5	2.0	2.5	2.0	2.0
Research	3.0	2.5	2.5	2.5	3.3
Non-government					
organisations / statistics					
offices	3.5	3.0	3.0	2.0	1.5


	What is the role of the stakeholder?	When will the action by the stakeholder have an impact?	Where will the action by the stakeholder have an impact?
Weight	50%	25%	25%
Score – 1	Indirect	Long-term: >2030	Local
Score – 2	Support	Medium-term: >2020	National
Score – 3	Part of team	Short-term: > 2015	Regional
Score - 4	Lead	Continuous	Global

Keep updated

THANK YOU

REmap@irena.org