
Heat Pump Technologies in Japan

Hirose Yukinobu, HPTCJ 20 June 2016

Japan

Energy Saving Measurement Each Sector

Industrial Sector

CEnergy Consumption reduction

: 10million KL

- 1) Main Industries' contribution to promote lowcarbon society
- 2) Thorough energy management in factories
- 3) Introduction of Innovative technology
- 4) Introduction of high efficient equipment
- ⇒ ✓ High efficient Room air conditioner
 - Industrial heat pump

Transportation Sector

OEnergy Consumption reduction

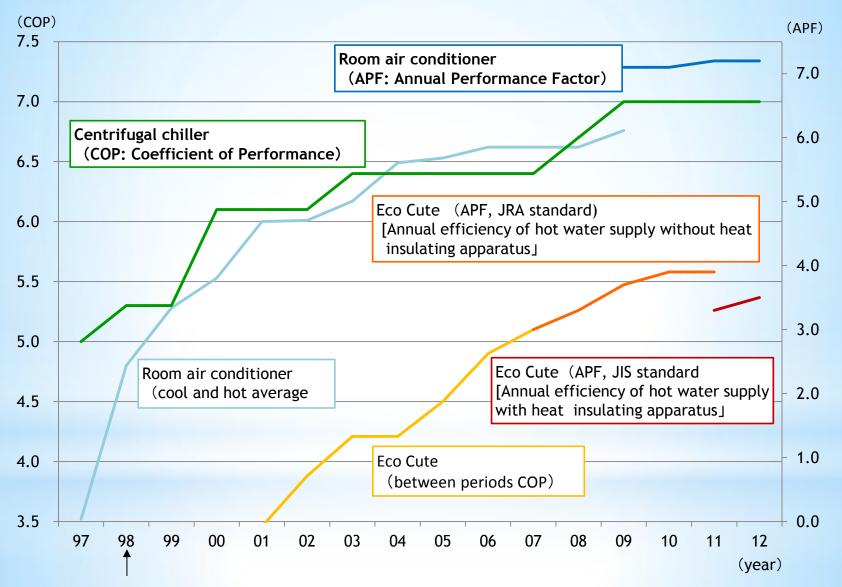
- : 16million KL
- 1) Promotion of Next-Generation Vehicles
- 2) a means of improving the traffic situation

Commercial and business Sector

- : 12million KL
- 1) Energy saving of buildings
 - ⇒✓ Energy saving regulation on new buildings
- 2) Improvement of energy management by BEMS
- 3) Improvement of hot water heater for business use

$\Rightarrow \checkmark$ heat pump water heater

✓ high efficient steam boiler

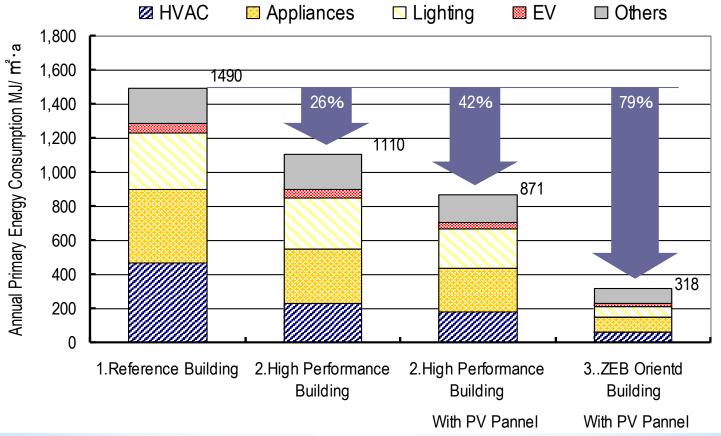

Residential Sector

- \bigcirc Energy Consumption reduction
- : 12million KL
- 1) Energy saving of a dwelling house
 - Energy saving regulation on new dwelling houses
- 2) Improvement of energy management by HEMS
- 3) Introduction of high efficient water heater

⇒ ✓ Introduction of "Eco Cute"

: 14million units as of 2030

Heat pump efficiency has been increasing



Top Runner Program was introduce

Source: Japanese makers catalog

©2016 HPTCJ. All rights Reserved.

Result of the Case study (IEA HPP Annex40 Japanese team)

•The current technological level enables 42% energy reduction

OThe prospective future technological advancement enables about 80% energy reduction.

- ⇒ Achieving NZEB needs improvements of performance coefficient of heat pumps (COP Cooling:7.0%, Heating:7.5%)
- \Rightarrow It is clear that utilization of heat pump is inevitable for achieving NZEB

Result of study on installing water source heat pump(HP) in the radiation panel system

	Air source HP	Water source HP (Well water)	Water Source HP (Well water + mitigated chilled water temp.)
Supply Heat rate [kWh]	85,598	85,598	85,598
Power for Water transfer [kWh]	5,788	9,134	9,134
Power for Air transfer [kWh]	0	0	0
Heat Source Equip. [kWh]	33,148	19,682	16,732
Total Amount [kWh]	38,935	28,816	25,866
System COP[-]	0.79	1.07	1.19
Primary Energy Unit [MJ/m2y]	39	29	26

•The change of the heat source equipment to a water source HP reduced the energy consumption of the heat source itself by 40% compared to the use of an air source HP (33,148 kWh⇒16,732kWh).

 In the case in which the heat source equipment was changed to a water source HP and hot- and cold-water temperature requirements were relaxed at the same time, the power consumed by the heat source equipment decreased to 16,732 kWh.

Source: IEA Annex 40 Japanese team 6