

science for global insight

Under what assumptions can the climate ambition of the Paris Agreement materialize?

IEA WB2DS Workshop Paris, France Joeri Rogelj – 20 June 2016

IIASA, International Institute for Applied Systems Analysis

Outline

- Paris climate ambition
- Emission implications
- Scenario implications

Paris Agreement

Paris climate ambition

"Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels"

The Long-Term Temperature Goal, Paris Agreement Article 2

"In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible [...], and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century"

Paris Agreement Article 4

Emissions implications

Emissions implications

carbon

IPCC AR5 WGI TFE.8 Fig. 1

Emissions implications

How much remains for 1.5°C and 2°C?

For 2°C >66% (is this "well below"?)

- About 1000 GtCO₂ after 2011 (IPCC AR5 SYR)
- 590–1240 GtCO₂ after 2015 (post-AR5 literature)

For 1.5°C

- 550 GtCO₂ after 2011 (IPCC AR5 SYR)
- 650 GtCO₂ since 2010-2020 average CMIP5 (present-day adjusted)

Context:

- Current annual emissions ~40 GtCO₂/yr
- Until 2011: about 1900 GtCO₂ emitted

Scenario implications

Internal consistency Paris Agreement

IPCC AR5 Scenario Database

ex-post temperature characterization

medium chance (50-66%) of limiting warming <2°C in 2100
likely chance (>66%) of limiting warming <2°C in 2100
>50% chance of returning warming to below 1.5°C in 2100

Scenario implications

Internal consistency Paris Agreement

Consistency between Article 2 & Article 4 Paris Agreement Article 4 49% 31% total Kyoto-GHG 0% 2050 2060 2070 2080 2090 2100 share post-2100 year of becoming net zero annual total Kyoto-GHG emissions (GtCO₂-eq yr⁻¹) 5-95% range median interguartile range^I medium chance (50-66%) of limiting warming <2°C in 2100 likely chance (>66%) of limiting warming <2°C in 2100 >50% chance of returning warming to below 1.5°C in 2100 2020 2040 2060 2080 2100 time (years)

-10

5

IIASA

IPCC AR5 Scenario Database; Rogelj et al (2015) ERL

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like? Energy system characteristics

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like?

Energy system characteristics

What do 1.5°C scenarios look like? Energy system characteristics

What do 1.5°C scenarios look like? Energy supply characteristics – no differences

What do 1.5°C scenarios look like? Energy supply characteristics – near-term differences

What do 1.5°C scenarios look like? Energy supply characteristics – medium-term differences

KLM

Key mitigation options

What do 1.5°C scenarios look like?

Negative emissions

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Key differences with 2°C scenarios

additional GHG reductions, mainly from CO2

CO2 reductions beyond net zero

rapid near-term decarbonisation of energy supply

greater demand side mitigation efforts

energy efficiency improvements are crucial

higher mitigation costs

comprehensive reductions in the coming decade

Half a decade of 1.5°C science at IIASA

Series of peer-reviewed publications:

Thank you

contact: rogelj@iiasa.ac.at