

Renewable Energies for Manufacturing Industries

Cédric Philibert Renewable Energy Division International Energy Agency

RE-energising the Future, RE Industry workshop Paris, 4 December 2015

www.iea.org

Electricity can power sustainable growth

2050 2DS

Generation today:

Fossil fuels: 68%

Renewables: 20%

Generation 2DS 2050:

Renewables: 65 - 79%

Fossil fuels: 20 - 12%

International Energy Agency
© OECD/IEA 2013

Direct « end-use » CO2 emissions

Industry and transport dominate non power sectors

ETP 2014

Fossil fuels dominate industrial energy use

Final industrial energy supply by sources

Final energy demand by sub-sectors

Renewables for manufacturing International Energy Agency Secure Sustainable Together Together

- Manufacting industries use ~ 30% of global energy
 - 40% including feedstock, blast furnace and coke oven
- Demand would grow until 2050
 - by 83% in the 6DS scenario (ETP 2014)
 - By 40% in the 2DS scenario
- Some substitution would occur
 - Biomass would grow from 6% to day to 13% in 2050 (2DS)
 - Electricity would grow from 24% today to 32% in 2050 (2DS)

How to increase the use of RE in manufacturing industries?

- How to increase the use of RE as in 2DS or beyond?
 - For energy, feedstock, process agents...
 - Using biomass, solar heat, geothermal...
 - Hydrogen from renewables
 - (mostly) Renewable power, self-generated or from the grid
 - Electrification of industry help integrate more variable RE

A three-year effort

- 2015: Inception meeting at IEA Headquarters (May)
 - Fact-finding and literature review
- 2016: Workshops and case studies
 - China with SGCC, end of March
 - Possibly USA with EPRI, H2

2017: drafting and reviewing

Current electrification trendsiea Energy Agency Secure Sustainable Together

- Ferrous metal recycling
 - Energy-efficient
- Advanced manufacturing
 - Smart sensors
 - Further automation
 - Robotics & cobotics
- Additive manufacturing
 - 3-D printing save feedstock

Figure 7.12 Share of recycled materials by industry

Source: Energy Energy Transitions for Industry (IEA, 2009)

But process heating is the big fish (e.g. in the US)

Process Energy (TBtu), 2010

Process Heating Energy = 7 204 TBtu 61 %

Non Process Energy = 1 434 TBtu 12%

Source: D.O.E., Office of Energy Efficiency & Renewable Energy (from MECS 2010)

Markets: industry

- Large heat needs at various temperature levels in industry and services;
- Low-temp. solar heat available everywhere, demand all year round
- High-temp. solar heat under hot and dry climates

Solar heat industrial use

Mirrah, Oman, forthcoming

operations

Efficient electric heating technologies

- Industrial heat pumps
 - Commercially available to 100°C output
 - Reaching 140°C output would double potential
- Induction heating and smelting
- Microwaves (food, rubber, plastics)...

Electrowinning

Electrowinning cell demonstrator (ULCOwin, 2011)

Opportunities Brought by Industries Electrification

- Industries electrification will result in the growth of electricity demand which brings opportunities for RE grid integration.
 - ◆ Growth of industrial electricity provide a large market for RE;
 - ◆ Increase of the share of industrial load changes the load profile and decrease the peak-valley ratio (peak-valley difference/ total load) of load.

Some Economics

Comparison Battery/ Consumers

Battery

Water Supply Distribution System

Battery Cost: 3500\$/10kWh (Tesla annoucement)

Cost for a 1MW/1MWh Battery:

350k\$

Instrumentation cost for a 1MW Flexibility at the consumer side:

35k\$

Store Energy in existing consumers is 10 times cheaper than the cheapest battery!!

Systems thinking and integration

A sustainable electricity system is a smarter, multidirectional and integrated energy system that requires long-term planning for <u>services</u> delivery

Useful links

- Renewable energies and manufacturing industries first workshop, Paris, May 2015
 - https://www.iea.org/workshops/renewable-energies-formanufacturing-industries.html
- Energy Technology Perspectives 2014 Harnessing Electricity's Potential
 - http://www.iea.org/bookshop/472-Energy Technology Perspectives 2014
- The Power of Transformation Wind, Sund and the Economics of Flexible Power Systems
 - http://www.iea.org/bookshop/465-The Power of Transformation
- Solar Energy Perspectives (2011)
 - http://goo.gl/uIU0N6