Renewable Energies for Manufacturing Industries

Cédric Philibert
Renewable Energy Division
International Energy Agency

RE-energising the Future, RE Industry workshop
Paris, 4 December 2015
Electricity can power sustainable growth

2011

- Primary energy use: 550 EJ
 - Power: 38%
 - Other: 62%

- CO₂ emissions: 33.8 Gt
 - Power: 39%
 - Other: 61%

2050 2DS

- Primary energy use: 695 EJ
 - Power: 52%
 - Other: 48%

- CO₂ emissions: 15.0 Gt
 - Power: 5%
 - Other: 95%
Electricity Generation: a share reversal

- Generation today:
 - Fossil fuels: 68%
 - Renewables: 20%

- Generation 2DS 2050:
 - Renewables: 65 - 79%
 - Fossil fuels: 20 - 12%
Direct "end-use" CO2 emissions

Industry and transport dominate non power sectors

- Industry: 27%
- Power: 37%
- Transport: 21%
- Other transformation: 6%
- Residential: 6%
- Services: 2%
- Agriculture/Other non-specified: 1%
Fossil fuels dominate industrial energy use

Final industrial energy supply by sources:
- Heat: 4%
- Biomass and waste: 6%
- Oil: 12%
- Electricity: 24%
- Coal: 36%
- Natural gas: 18%

Final energy demand by sub-sectors:
- Iron and steel: 25%
- Others: 40%
- Non-metallic minerals: 12%
- Chemical and petrochemical: 13%
- Non-ferrous metals: 4%
- Pulp and paper: 6%
Renewables for manufacturing industries – the rationale

- Manufacturing industries use ~ 30% of global energy
 - 40% including feedstock, blast furnace and coke oven

- Demand would grow until 2050
 - by 83% in the 6DS scenario (ETP 2014)
 - By 40% in the 2DS scenario

- Some substitution would occur
 - Biomass would grow from 6% to day to 13% in 2050 (2DS)
 - Electricity would grow from 24% today to 32% in 2050 (2DS)
How to increase the use of RE in manufacturing industries?

How to increase the use of RE as in 2DS or beyond?

- For energy, feedstock, process agents...
- Using biomass, solar heat, geothermal...
- Hydrogen from renewables
- (mostly) Renewable power, self-generated or from the grid
- Electrification of industry help integrate more variable RE
A three-year effort

- **2015: Inception meeting at IEA Headquarters (May)**
 - Fact-finding and literature review

- **2016: Workshops and case studies**
 - China with SGCC, end of March
 - Possibly USA with EPRI, H2

- **2017: drafting and reviewing**

Global industrial energy use

![Graph showing global industrial energy use from 2000 to 2011. The graph includes categories such as United States, European Union, Other OECD, China, India, and Other non-OECD. The y-axis represents energy use in gigajoules, ranging from 0 to 180, and the x-axis represents years from 2000 to 2011.]
Current electrification trends

- Ferrous metal recycling
 - Energy-efficient
- Advanced manufacturing
 - Smart sensors
 - Further automation
 - Robotics & cobotics
- Additive manufacturing
 - 3-D printing save feedstock

Source: Energy Energy Transitions for Industry (IEA, 2009)
But process heating is the big fish (e.g. in the US)

Process Energy = 10 350 TBtu
88%

Process Heating Energy = 7 204 TBtu
61%

Non Process Energy = 1 434 TBtu
12%

Markets: industry

- Large heat needs at various temperature levels in industry and services;
- Low-temp. solar heat available everywhere, demand all year round;
- High-temp. solar heat under hot and dry climates.
Solar heat industrial use

- Solar water heaters in a service area (Austria)
 Source: AEE INTEC.

- Cooking with Scheffler dishes (India)
 Source: Deepak Gadhia

- Experimental industrial solar oven (France)
 Source: Four Solaire Développement

- Solar air drying of coffee beans (Columbia)
 Source: SolarWall.
Mirrah, Oman, forthcoming

Parabolic troughs protected from winds & soiling in greenhouse (Glasspoint)

... for enhanced oil recovery operations
Efficient electric heating technologies

- **Industrial heat pumps**
 - Commercially available to 100°C output
 - Reaching 140°C output would double potential

- **Induction heating and smelting**

- **Microwaves (food, rubber, plastics)**...
Electrowinning

Electrowinning cell demonstrator (ULCOwin, 2011)
Industries electrification will result in the growth of electricity demand which brings opportunities for RE grid integration.

- Growth of industrial electricity provides a large market for RE;
- Increase of the share of industrial load changes the load profile and decreases the peak-valley ratio (peak-valley difference/total load) of load.

Graphs:
- Peak-valley ratio: 31.70%
- Peak-valley ratio: 20.13%

Graph Descriptions:
- Residential load growth
- Industrial load growth
- Peak-valley ratio decrease
Battery Cost: 3500$/10kWh (Tesla announcement)

Cost for a 1MW/1MWh Battery:

350k$

Instrumentation cost for a 1MW Flexibility at the consumer side:

35k$

Store Energy in existing consumers is 10 times cheaper than the cheapest battery!!
A sustainable electricity system is a smarter, multidirectional and integrated energy system that requires long-term planning for services delivery.
Useful links

 - https://www.iea.org/workshops/renewable-energies-for-manufacturing-industries.html

- **Energy Technology Perspectives 2014 – Harnessing Electricity’s Potential**

- **The Power of Transformation – Wind, Sund and the Economics of Flexible Power Systems**

- **Solar Energy Perspectives (2011)**
 - http://goo.gl/uIU0N6