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l. The Changing Climate

* Key Indicators for Science and Research
— Air Temperature Rise
— Sea Level Rise

— Changing Patterns of Precipitation & Water
Availability

— Frequency & Magnitude of Extreme Events

* For Example: Hurricanes & Wildfires
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Air Temperature Rise
-- Past & Projected
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Surface Air Temperature Rise
-- Two Scenarios

RCP 2.6 RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)

IPCC AR5 WG1, Summary for Policy Makers , Approved 27Sep2013, Figure SPM.8(a)
Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5.
RCP - Representative Concentration Pathway (at selected radiative forcing in 2100, W/m?2)
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Sea Level Rise

-- Past and Projected

(d) Global average sea level change
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IPCC AR5 WG1, Summary for Policy Makers , Approved 27Sep2013, Fig PM.8(b)
Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5.
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Projected Annual Change in Mean Soil
Moisture — 4 Scenarios

Annual mean near-surface soil moisture change (2081-2100)

uum—(mm)
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Availability of Water from Snowpack
Washington State, U.S. Northwest

Historical SWE average Projected SWE (A1B scenario)

-29%

2020s

April 1 Show-Water
Equivalent

-44%

Historical Change

. 2400 mm/95 in. - -100%

10 mm/0.4 in. 0%

2040s

Reduced SWE caused by:

-Greater proportion of precipitation falling as rain
rather than snow

- Warmer spring temperatures causing earlier
runoff

Source: Elsner et. al (2010)

-65%

2080s

28 November 2013




Projected Increase in Number of Cat. 4 & 5
Atlantic Hurricanes — Two 20-Year Periods

Current climate conditions (modeled) Projected conditions
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Projected Changes in Wildfire Distribution

Projected Change in Wildfires for 2010 to 2099

2010 2099

decrease littke/no chang increase

Krawchuk MA, et al, (2009) “Global Pyrogeography: the Current and Future Distribution of Wildfire.”

PLoSONE 4(4): e5102. doi:10.1371/journal.pone.0005102
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Time to Equilibrium

Time to Equilibrium

Climate-change experts predict that even when GHG emissions are

curtailed, their effects on the environment will continue to be felt for
hundreds, if not thousands, of years.

Magnitude of Response

Sea-Level Rise due Ice Melting
Several Millennia

Sea-Level Rise due to Thermal
Expansion
Several Millennia

Temperature Stabilization
A few Centuries

CO, Stabilization
100 to 300 Years

=== | CO, Emissions

Today 100 Years 1,000 Years

]

28 November 2013 Jones-Thompson, Maryanne, “Engineering Climate”, Technology Review, MIT, March 2005
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Il. Energy Technologies Vulnerable to
Change

Electric Grid: i
Energy Demand: oeraase Wind Energy:
Coastal Facilities: Enhanced demand ;lde storm hardening of Improved ability to handle Goneentrating Solar
Increased physical management an icci P — extreme weather events
: transmission/ distribution Improved dry and wet-
resilience for onshore energy/water efficient " . : !
doffeh equibment and buildings lines, distributed and dry hybrid cooling and
and offshore ener: ui uildi : ’
9y AR d backup generation, v solar desalination

[ infrastructure

energy storage, and e gy £ technologies
siting in less vulnerable ¥ oy : 5
locations e —f

Nuclear Power Plant: ’
Improved cooling ” - Hydropower: :
technologies and use of Coal/Natural Gas Improved turbine BN

e N e ; non-traditional water Power Plants: efficiency and reservoir
Oil and Natural Gas: | supplies " Improved generation [ management - :
7 b * ffici dwate % Bioenergy:
Improved water-efficiency eificiency and water _ — ,-v_.-J \mproved water Use for
\ efficient cooling and
and reuso:e, and. u.se of y ccs d biomass and refining
alternative drilling/ systems
fracking fluids

U.S. Department of Energy, “U.S. Energy Sector Vulnerabilities to
28 November 2013 Climate Change and Extreme Weather,” DOE/PI-0013, July 2013
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New York City
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* Increased Air Temperatures ~ * Magnitude and Frequency of
Will Increase Demand for Heat Events Will Result in More

_ , ) Extreme Peaking of Energy
Offset Transmission Grid
Efficiency Losses).

28 November 2013 15



Energy Oil & Gas Production Systems

28 November 2013

Water Availability

Storms
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View of Gulf Coast Energy assets, 2030

MS Oil and gas prod.

equipment
: Land Rigs $5 bn by 2030 AL
- ik
Oil pipelines processing
$12 bn by 2030 plants
$8 bn by
TX 2030
LNG Facilities
$7 bn by 2030
Refineries ] e
w generation
$10; bn by ol ’ $80 bn by
203 o o 2030
Chemical Plants | T, (
$205 bn by 2030 7 A ah
3 Natural Gas NN
pipelines
e - $60 bn by 2030
}‘,
L2 Shallow water
B @ production facilities
f $1 bn by 2030
_J Offshore pipelines
$68 bn by 2030 Deep water production
: facilities
$80 bn by 2030

Offshore Rigs
$37 bn by 2030

Entergy: Report CC Adaptation Gulf Coast Oct 2010
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Gulf Coast Energy Assets at Risk

Refineries
Petrochemical plants
LNG facilities

Power generation

Shallow water
production facilities

O Deoempe

Deep water
production facilities

—— Other Oil and Gas?

Modeled ~ 50,000 oil and
gas structures including
90,000 miles of pipelines,
2000 offshore platforms
and 27,000 wells

Considered over 500,000
miles of T&D, and ~300
generation facilities

Consolidated
information across 10-
15 key databases,
including EIA, MMS,
Energy Velocity, OGJ,
Tecnon, HPDI, Wood
Mackenzie, Ventyx,
Energy Velocity, Entergy
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Oil/Gas/Chemical Assets

Granular maps and spatial valuations for different o Offshore
asset categories are developed i

Offshore platforms, 2010

D Area in scope

Offshore pipelines

1 - Gulf of Mexico offshore assets key statistics:
= More than 2,500 active shallow water platforms
(- = 145 active deepwater platforms

= ~14,000 miles of offshore pipelines

Entergy: Report CC Adaptation Gulf Coast Oct 2010
28 November 2013 Source: MMS; Qil and gas journal; Energy Velocity
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Water Availability
& Temperature

Water Availability
& Temperature
Storms & Flooding

Water Availability
& Temperature
Storms & Flooding
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Wildfires

28 November 2013

Renewable Energy Systems

Temperature & Storms

tif(ftqkww

P e Ty

- Hydropower
Changes in Wind Patterns Increase or Decrease?
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Electric Grid

Temperature & Storms
Icing of Power Lines

Wildfires

Lines can
sag from
high loads
and hot
weather.

Lines can
sway in
high winds.

Temperature - Sag
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Storms

Storms & Floods
28 November 2013

Fuel Distribution Systems

Thawing Permafrost
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Climate Impacts on Energy Systems

Sea Level Water

Temperature Rise Precipitation Availability Extreme Events
Storms Floods Drought Fires

Energy Demand N N
Oil/Gas Prod N N N N \ \
Thermal Power N N N N \ \
Hydro N N N N \
Wind N \
Solar N \
Other (CSP, Geo) N \ \ \ \
Bio-Energy/fuels N N N N N N N \
Electric Grid N N \
Fuel Transport N N \ N \

CSP = concentrating solar power
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lll. Examples of Remedial Strategies

Reduced Energy Demand from Temperature
and Infrastructure

Energy Efficient Buildings

Improvements to Appliances/Equipment
Natural Ventilation, Sun Shading
Improved HVAC, GSHP,

Water-Conserving Thermal Processes
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Sea Level Rise and Coastal Resiliency
Measures
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Wet Floodproofing
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Floating Structures

Strategic Retreat Multi-purpose Levees

N

Amphibious Structures

City of New York, “A Stronger, More Resilient New York,” June 11, 2013
Department of City Planning (DCP)

Groins Coastal Morphology Restoration
Breakwaters Polders E

Constructed Wetlands

Floating Islands / Breakwaters

Constructed Barrier Islands

Surge Barriers

Source: DCP

25



Reduced Water Demand by Reuse

* Alternative Water Supplies To Freshwater:
— Brackish or Waste Water for Power Plant Cooling
— Reuse/Recycle Water for Gas Production

— Dry Cooling, Advanced Condensing Cooling Towers
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Reduced Water Demand via
Indirect Dry Cooling

SRl 1) |
APy iads

This power station in Mpumalanga, South Africa, comprises 6 x 686 MW units,

and operates with the largest indirect dry cooling system in service world wide.

The indirect cooling plant was built by DB Thermal in 1984. It includes 6 Cooling Towers,
each 165m high with a throat diameter of 102m.
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IV. Workshop Objectives and
Desired Outcomes

* All Energy Technologies Exhibit Some Vulnerabilities to the
Consequences of the Changing Climate

 Each Country or Region Will Likely Have a Unique set of
Urgencies

* New and Strengthened Technologies Can be Made More
Resilient to Many Challenges

e Better Information Can Influence Parameters of Design

 Energy RD&D Planners Should Consider How the Changing
Climate Will Alter RD&D Priority-Setting

 What are the Top Priorities for Increased RD&D Investments?
* What are Top-Priority Supporting Policy and Analytical Needs?



Additional Questions Needing Attention

 How do you define climate preparedness and resilience for energy
systems?

* What tools, data, and information would be most helpful in
evaluating climate preparedness and resilience?

 What lessons can be learned from the private sector, or from
public-private partnerships in developing response strategies and
deploying climate-resilient energy technologies?

* What are the elements of an effective, integrated framework for
monitoring, evaluating and communicating progress towards a
climate resilient energy system?

 What approaches would be most effective to communicate results
of energy sector vulnerability assessments to climate change, and
to inform decision-making for prioritization or restructuring of
research investments and related policies, and achieve desired
outcome?



Workshop Products
and Next Steps

 Summary Report of Workshop
* Key Findings and Recommendations

— Vulnerabilities to Energy Systems
— Potential for Technological Remedies
— Selected R&D Needs
— Additional Tools & Information
— Supporting Policy
* Next Steps
— Communicate Results to CERT and Above
— Convey Conclusions to IEA Technology Network
— Take Lessons Home & Influence National Research Agenda



