

Monitoring Progress Towards a Clean Energy Economy

Energy Storage as a Tool to Address GHG Emissions

Andy Chu, Ph.D. A123 Systems

©2011 A123 Systems, Inc. All rights reserved.

A123 Systems

Manufacturer of Advanced Energy Storage

- #1 lithium ion battery manufacturer in U.S.
- #1 supplier globally of lithium ion systems for grid applications

Transportation	Electric Grid		Commercial	
Commercial Passenger Hybrids, PHEVs and EVs EVs	Regulation, Grid Reliability	Renewable Integration, Congestion Relief	IT & Telecomm	Medical Systems
			INCLAS	
			Material Handling	Industrial Controls

Energy storage can impact several key technologies for reducing global GHG

Energy storage is transforming how energy is generated and used in transportation and grid sectors

Key Questions

- Compared to ETP Blue Map scenarios from present day to 2050, which technologies appear to be making progress as expected, and which are not?
- What are the major barriers to inhibiting greater development and deployment? Can these be characterized by categories, such as: (a) policy; (b) socio-economic; and (c) technical and/or cost?
- What would be the most important messages for the audience (IEA, CEM Ministers, etc.)?
- What are the most important actions that IEA member countries might take to address barriers?
- For technical and cost-reduction barriers, what are the most fruitful areas or opportunities for enhanced R&D cooperation to address technologies that are not progressing as expected?

Are EV-PHEVs making progress as expected?

- Initial sales have been slower than hoped in the U.S.
 - + Nissan Leaf sales: ~8000 as of October 2011
 - + Chevy Volt sales: ~4000 as of October 2011
 - + Still higher than first year sales of Toyota Prius (~3000)
- Development activity has been strong
- Growing interest in commercial vehicles and startstop/micro hybrids

http://www.rolandberger.com/media/press/releases/Study_on_development_of_automotive_Li_Ion_battery.html

Global Vehicle LiB Market Study

Global Study

Detroit/Munich, August 2011

Management summary

- > The global automotive Li-lon battery market is forecast to grow from USD 1.5 bn to USD 8.9 bn by 2015
- > Further growth to USD 53 bn forecast in the 2020 high scenario
- > Light vehicles will dominate the market development over 80% of total value in 2015
- > Truck market will be driven by electrification of class 3 and class 4 pickup and delivery trucks
- > China will account for over 80% of the bus market value
- > As the market takes off, five frontrunners will dominate and the industry will consolidate
- > Consolidation was already forecasted in a 2010 Roland Berger report which concluded that industry overcapacity will exist in 2015

Source: Roland Berger

The global LiB market is expected to be USD 9 bn in 2015 – Light Vehicles dominate and high growth in China occurs after 2015

1) Light vehicles = passenger cars + light commercial vehicles (class 1-3) Source: Roland Berger LiB market model

Light vehicles dominate the xEV market because of the large volume base and relatively high penetration rates

Total vehicle build and penetration rate assumptions by vehicle class [m units]

Source: Roland Berger LiB market model

Micro-Hybrid Applications Fuel economy gains for limited incremental cost

Upgrading a conventional vehicle's battery, starter & alternator enables significant fuel savings for limited cost & development effort

Annual Micro-Hybrid Sales by Region

(Source: Pike Research)

What are the major barriers to EV-PHEV deployment?

Consumers:

- + Initial cost
- + Range anxiety
- + Awareness, lack of authoritative information
- + Lack of customer choice
- + Charging infrastructure

Automakers

- + Cost
- + Technology integration, manufacturing
- + Regulatory certainty

©2011 A123 Systems, Inc. All rights reserved.

Battery costs are dropping rapidly

- Battery manufacturers are bidding programs with prices close to the target range
 - + Current costs are \$500-700/kWh, with prices dropping to \$400-500/kWh in the next few years
 - Industry analysts expect battery pricing to drop to <\$400/kWh within five years
- Suggested metrics
 - + Usable energy, not total energy
 - + Total cost of ownership, not initial cost

Battery costs through 2020

Battery costs for PHEVs and EVs must drop rapidly toward USD 300/kWh in order to bring vehicle costs to competitive levels.

What are the most important messages?

- Regulations drive action in industry
- Policy support must be consistent and sustained
- Stop thinking about vehicles as transportation devices and start thinking of them as mobile energy storage resources
 - + EVs and PHEVs work synergistically with other technologies
 - + EVs and PHEVs are the only vehicles that get cleaner the longer they're on the road (because the grid gets cleaner)
 - + EVs and PHEVs are an opportunity to "future-proof" the transportation sector
 - + PHEVs are neutral regarding liquid fuel use: can be gasoline, diesel, biofuels
 - + The future generation mix is TBD, but if we start deploying EVs and PHEVs *now*, we will magnify the benefit of a cleaner, *future* grid

The paradigm shift in energy usage

What are the most important actions to address barriers?

- Progressive fleet fuel economy or emissions rules which favor EV-PHEV adoption
- Financial incentives for EV-PHEV owners
 - + Higher petroleum-based fuel costs relative to electricity, rebates at point-of-sale, tax credits, reduced registration fees, reduced electricity prices for off-peak charging, revenue from grid services, etc.
- Non-financial incentives for EV-PHEV owners
 - + HOV lane use, parking, access to city center, etc.

What are the opportunities for enhanced R&D cooperation?

- Opportunity exists at government-level that are much more difficult for private industry to undertake
 - + Systems-level approach: create the ecosystem
 - + Infrastructure, standards, protocols
- Fast charge system development
 - + Batteries, charging infrastructure
- Alternative vehicle architectures, business models

- + Vehicles are vastly underutilized resource (2 out of 24 hours)
- + If a vehicle battery could offer some other service while plugged in, it would improve the economics and accelerate adoption

What is grid energy storage?

Slide adapted from Janice Lin, California Energy Storage Alliance (CESA)

Grid energy storage allows energy to produced when it is most efficient to do so

- Problem: energy is needed but can not always be generated by the most efficient (least CO₂ intensive) means
 - + Due to lack of availability of the generation resource or the inability of the grid to use the generation for load when/where it is needed
 - + Result: wasted energy, greater emissions
- Grid energy storage:
 - + Allows greater use of renewables
 - + Increases efficiency of fuel-burning plants, thus reducing emissions
 - + Increases reliability and reduces need for backup generation
 - + Facilitates micro-generation
 - + Maximizes utilization other technologies and grid assets (synergistic)

Is grid energy storage making progress as expected? Yes!

A123 will have deployed 90MW of grid energy storage by end of 2011

Coming in 2012: Tehachapi Storage Project

- Customer: Southern California Edison
- Location: Tehachapi Windfarm
 - + California's largest wind resource
 - + Wind development potential driving grid infrastructure upgrades and expansion
 - + 2nd largest wind park in the world
 - 660MW installed / ~5,000 turbines
- System
 - + 8MW 4 hour (32MW-hour) GBS system
 - World's largest Li-ion battery system when complete
 - + Dynamic 4-Quadrant PCS/Grid Interface
 - + A123 Prismatic Cells
 - + Installation / Operation 2012
 - + 13 Targeted Operational Uses Individually and Stacked

13 Operational Uses and Investment Recovery

Use	Market	T Rate Base	D Rate Base
1. Voltage support/grid stabilization	\bigstar	*	\overleftrightarrow
2. Decreased transmission losses		\bigstar	\bigstar
3. Diminished congestion	\bigstar	\bigstar	
4. Incr. reliability by load shed deferral		\bigstar	*
5. Deferred transmission investment		\bigstar	\overleftrightarrow
6. Optimize renewable-related transmission		*	\bigstar
7. Provide system capacity	*		
8. Renewable integration (smoothing)	*	\bigstar	
9. Renewable output shifting	\bigstar		
10. Frequency regulation	\bigstar		
11. Spin/non-spin replacement reserves	\bigstar		
12. Deliver ramp rate	\bigstar		
13. Energy price arbitrage	\bigstar		

What are the major barriers to grid energy storage deployment?

• Cost

- Market design, regulatory barriers
- Insufficient data, conservatism in utility customers

Cost is the primary challenge

- Beyond bulk mechanical storage (hydro, CAES), batteries are the main focus of effort
 - + Lithium ion
 - + Sodium sulfur
 - + Lead acid
- Most batteries technologies are \$300-1000/kWh, but need to be below \$200/kWh with 10+ year life
- Lithium ion-based grid energy storage is benefitting from lithium ion usage in consumer electronics and transportation
- Some usages are economically attractive today and many more will become attractive as battery prices drop

What are the most important messages?

- Grid energy storage can do more than just store energy at night for discharge during peak day hours
 - + In fact, the most valuable applications occur over much shorter time scales (seconds and minutes, not hours)
- Lack of clarity in how energy storage services will be compensated has slowed deployment by utilities
 - + Facilitating the deployment in today's applications will accelerate the use of storage in future applications
 - Grid energy storage is being deployed commercially today, without government subsidies or support, for ancillary services
- To achieve high levels of PV and wind penetration, some form of energy storage is required

Ancillary services

	Service Description				
Service	Response Speed	Duration	Cycle Time		
Regulation	Power sources online, on automatic generation control, that can respond rapidly to system-operator requests for up and down movements; used to track the minute-to- minute fluctuations in system load and to correct for unintended fluctuations in generator output to comply with Control Performance Standards (CPSs) 1 and 2 of the North American Reliability Council (NERC 2002)				
	~1 min	Minutes	Minutes		
Spinning reserve	Power sources online, synchronized to the grid, that can increase output immediately in response to a major generator or transmission outage and can reach full output within 10 min to comply with NERC's Disturbance Control Standard (DCS)				
	Seconds to <10 min	10 to 120 min	Days		
Supplemental reserve	Same as spinning reserve, but need not respond immediately; units can be offline but still must be capable of reaching full output within the required 10 min				
	<10 min	10 to 120 min	Days		
Replacement reserve	Same as supplemental reserve, but with a 30-min response time; used to restore spinning and supplemental reserves to their pre-contingency status				
	<30 min	2 hours	Days		
Voltage control	The injection or absorption of reactive power to maintain transmission-system voltages within required ranges				
	Seconds	Seconds	Continuous		

Table 1. Definitions of key ancillary services

Ancillary services provide the resources the system operator requires to reliably maintain the instantaneous and continuous balance between generation and load.

7:00 AM 8:00 AM 9:00 AM ©2011 A123 Systems, Inc. All rights reserved.

96

to

100

MW output

Standard power plant

Grid Battery System (GBS) hybridizes a power plant

Frequency Regulation

GBS provides power (discharges) Average output of power plant GBS is charged by power plant

Spinning Reserve

Autonomous Response to Loss of Generation

©2011 A123 Systems, Inc. All rights reserved.

Spinning Reserve: Chile Case Study

- Challenge: Fragile power system drives high generation reserve requirement
- Solution: 12 MW/4MWh in 8 Packaged systems
- Result: replaced unpaid generator reserve
 - Frees up generating capacity for paid energy service
 - In commercial service since
 2009 with <3 year payback
 - + Superior fault response performance

Renewable Ramp Management

Absorb sudden changes in wind farm output

Wind Project Output

SYSTEM

Renewable Firming

Wind Project Output

What are the most important actions to address barriers?

- Design energy markets to compensate energy storage for the value it provides to the grid
 - + Remove uncertainty about asset recovery
- Regulatory structure
- Funding for more large-scale deployments
 - + Data from government-funded projects should be openly shared

Example of harnessing the free market: FERC Pay-for-Performance Rule

 Pay-for-Performance Rule: fastresponding assets should receive higher payment.

- Implementation starts in 2012
- This rule should reduce the amount of frequency regulation that is procured, thus lowering emissions
- Market design and regulatory framework are key to accelerating use of new technologies

Policy Recommendation: Simultaneous Markets

Storage rearranges traditional functional separations

Policy Recommendation: Simultaneous Markets

Allow an asset to participate in all relevant markets

- Barrier: legal restrictions impede full storage asset utilization
 - + Restrictions in place to protect against cross-subsidization
 - + State/Federal: an asset is usually categorized as either distribution or transmission
 - + Generation/Transmission: a transmission asset cannot participate in energy and ancillary service markets
- Solution: remove restrictions or create mechanisms to facilitate modular ownership and full utilization
 - + Option: Contractual, competitive solicitations for grid functions
 - + Option: Transparent accounting of new storage assets

What are the opportunities for enhanced R&D cooperation?

- Demonstration projects employing grid energy storage to solve specific local challenges (e.g. wind integration)
- Studies to quantify and demonstrate the benefits of grid energy storage, with the goal of establishing structures for assets to be compensated for their value
 - + State-owned grid operators that self-provide have unique opportunity to deploy energy storage for multiple services
- R&D into new materials and energy storage architectures that reduce cost while improving reliability and life
- Studies to demonstrate the ability of plug-in electric vehicles to offer grid services, such as frequency regulation, renewable integration, and spinning reserve

Business Case Comparison

Minimal incremental benefit from bi-directional flows

Fast charge system using stationary batteries

- 1 Stationary battery gradually charged, minimizing negative impact to grid
- **2** Stationary battery offers grid ancillary services (bidirectional)
- **③** Vehicles are DC fast-charged using stationary battery
- **4** Parked vehicle offers certain grid services (variable-rate charging)
- **5** Stationary battery facilitates use of rooftop PV

(5)

3

Contact Information

- Andy Chu, Ph.D.
 <u>achu@a123systems.com</u>
 +1 617-778-5712
- www.a123systems.com