NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL "CO₂ Capture and Separation: Technology Costs and Progress "

Charles E. Taylor, Director, Chemistry and Surface Science Division

National Energy Technology Laboratory

• Full-service DOE Federal laboratory Al

- Program Planning
- Budget Formulation and Execution
- Procurement
- Project Management
- Legal
- Financial Management and Reporting
- On-site Research
- Program Performance and Benefit Analysis
- Dedicated to energy RD&D, domestic energy resources
 - Fossil Energy
 - Support OE and EE
- Fundamental science through technology demonstration
- Unique industry, academia, and government collaborations

Blue Map Scenario

Figure 4. Key technologies for reducing CO₂ emissions under the BLUE Map scenario, 2010

www.iea.org/papers/2011/CEM_Progress_Report.pdf

The Challenge:

Meeting the Blue Map Deployment Goals for CCS

The Barriers:

- Storage
 Assurance of Risk
- Cost
 Public Acceptance
- Re-Use of Carbon
- Global Action

- Uncertain Government
 Policies
- Ecological Aspects

Pathways To CO₂ Emission Reduction

- Energy efficiency (14 GtCO₂e/yr)¹
 - Vehicles, Buildings, industrial equipment
- Low-carbon energy supply (12 GtCO₂e/yr)
 - Wind, Nuclear, Solar Energy
 - Biofuels for transportation
 - Fossil fuels with Carbon Capture and Storage
- Terrestrial carbon (12 GtCO₂e/yr)
 - Reforesting, halting deforestation
 - CO₂ storage in soils through changing agricultural practices
- Behavioral change (~4 GtCO₂e/yr)

Office of Fossil Energy

. CO₂ Reduction opportunities by 2030 from Pathways to a Low-Carbon Economy, McKinsey & Company, 2009.

Clean Energy Standard (CES)

- In his most recent State of the Union address, President Obama proposed a Clean Energy Standard (CES) to require that 80 percent of the U.S. electricity come from clean energy technologies by 2035.
- The model applies the Environmental Protection Agency's Nine Region MARKAL Database (EPAUS9r) that was developed by EPA around the nine U.S. Census divisions.
- The model investigated the impacts of a CES mandating 80 percent of electricity must be generated from "clean" energy sources (with carbon capture and storage (CCS) qualifying as 90 percent "clean") by the year 2035.
- The analysis looks at the impact of R&D in CCS under a CES and compares tax and cap & trade scenarios
 Office of Fossil Energy

Clean Energy Standard Scenario Definitions

- Base case: resource supply and end-use demands are taken from AEO 2010
- **Base CES:** 80% of electricity from "clean energy" by 2035
 - Renewables worth 1 credit, NG worth 0.5, coal with CCS at 0.9
- CES with Enhanced CCS: cost and performance of CCS (both coal and NG) meet DOE goals
- CO₂ tax: \$23/t CO₂ emissions tax in 2020, increasing at 5.8 % annually
- CO₂ cap: CO₂ reduction level from CES, via CO₂ cap in electricity generation

Clean Energy Standard Model Results

- The results of the model indicate that while CCS can play a significant role in a CES by minimizing electricity price increases and maintaining baseline electricity generation levels, the cost and performance of CCS must meet the R&D goals of the U.S. Department of Energy in order to meet its full potential.
- NETL was first to specifically model CCS in a CES mandate and it is expected that this analysis will establish a benchmark for other analyses as other organizations begin to assess the impacts of a CES.

Deployment Barriers For CO₂ Capture On <u>New And Existing</u> Coal Plants Today

- 1. Energy Penalty
 - 20% to 30% less power output
- 2. Cost
 - Increase Cost of Electricity by 80%
 - Adds Capital Cost by \$1,500 \$2,000/K
- 3. Scale-up
 - Current Post Combustion capture ~200 TPD
 - 550 MWe power plant produces 13,000 TPD
- 4. Regulatory framework
 - Transport pipeline network
 - Storage
- 5. Economies of Scale
 - Land, power, water use, transportation, process components, …

High Efficiency Low Emission (HELE) Coal-Fired Power Plants

- Coal is an inexpensive and abundant energy source
- Coal usage is projected to more than double by 2050 in base-line scenarios
- Non-OECD countries and the U.S. will be the main coal consumers
- In Blue Map Scenario, coal usage for power generation is reduced by >75%
- CCS and efficiency improvements are critical for future use of coal in power generation

Net Plant Efficiency (With and Without CO₂ Capture and Compression)

Office of Fossil Energy

Advanced Carbon Dioxide Capture R&D Program; Technology Update, May 2011

Technologies For Improving The Efficiency Of Existing Power Plants

- Renovation and Modernization Technologies for Existing Power Stations
 - $\sim 40\%$ of U.S. CO₂ from electricity generation [1]
 - Average age of >250 MW plants in U.S. is 34 years [1]
- Waste Heat Recovery from Power Plants
- Higher-Efficiency New Power Plant Technologies
 - Supercritical and Ultra-Supercritical Technologies
 - Integrated Coal Gasification Combined Cycle (IGCC)
 - Advanced Ultra-Supercritical Technology
- Development and Deployment of Other Innovative High-Efficiency Cycles
 - More Efficient CO₂ Capture Technologies

[1] http://www.netl.doe.gov/publications/proceedings/11/co2capture/presentations/1-Monday/22Aug11-Hutson-EPA%20Rulemaking%20for%20GHG.pdf

Office of Fossil Energy

http://www.majoreconomiesforum.org/images/stories/documents/mef%20helec%20tap%2014dec2009.pdf

Technologies For Improving The Efficiency Of New Power Plants

- Supercritical and Ultra-Supercritical Combustion
- Integrated Coal Gasification Combined Cycle (IGCC)
- Advanced Ultra-Supercritical Technology
- Fuel Switching
- Co-Firing
- More Efficient CO₂ Capture Technologies

HELE Barriers To Deployment

- Insufficient Information/Sharing of Information
- Varying Qualities of Coal
- High Upfront Cost of Advanced HELE Coal Technologies
- Lack of Appropriate Price, Financial, Legal, and Regulatory Frameworks, (Both in the U.S. and International)
- Inadequate Operation and Maintenance Skills
- Insufficient Research, Development, and Demonstration

http://www.majoreconomiesforum.org/images/stories/documents/mef%20helec%20tap%2014dec2009.pdf

National Risk Assessment Partnership (NRAP) Developing a Defensible, Science-Based Methodology for Quantifying Long-Term Liability.

NRAP Team

NETL

- fracture flow models
 geomechanics models
 geospatial databases
- high PT validation

LBNL

•reactive-flow models

- •system models
- field geophysicsgroundwater models

PNNL

•reactive-flow models

- data integration platform
- •groundwater models
- high PT validation

LLNL

- reactive-flow models
- •geomechanics models
- •groundwater systems
- high PT validation

LANL

- reactive-flow models
- •geomechanics models
- systems models
- •geomaterials properties

Office of Science Labs (science base) (engineered natural systems) **NNSA** Labs

Fossil Energy Lab (fossil energy base)

DOE/NETL CO₂ Capture RD&D

R&D Programs

Office of Fossil Energy

Advanced CO₂ Capture Technologies

Solvent Technologies

- Novel High Capacity Oligomers
- Phase Change Solvents
- Ionic Liquids
- Amino Acids
- Carbonates
- Enzymes
- Advanced Processes

Oxycombustion Technologies

- "2nd Gen" Oxyboiler Designs
- Existing Boiler Retrofits
- Low Cost O₂ (Membrane)
- CO₂ Purification
- Co-Sequestration

Chemical Looping

Advanced CO₂ Compression

Sorbent Technologies

- Metal Organic Frameworks
- Supported Amines
- Metal Organic Framework (MOF)
- Carbon-based
- Alumina
- Water-Gas Shift (IGCC)
- Sorbent Systems Development

Membrane Technologies

- Spiral wound & hollow fiber
- Cryogenic membrane separation
- Membrane/Solvent Hybrid
- Fuel Cell Hybrid
- Integrated Water-Gas Shift
- H₂ Selective Zeolite
- High Temperature Polymer
- Nanoporous
- PSA/Membrane Hybrid
- Palladium Alloys Office of Fossil Energy

http://www.netl.doe.gov/technologies/coalpower/ewr/index.html

Pulverized Coal Power Plant System

Post-combustion CO₂ Scrubbing

IGCC Power Plant System *Pre-combustion CO*₂ *Scrubbing*

<u>Selexol[™] CO₂ Capture Advantages</u>:

- 30+ years of commercial operation (55 worldwide plants)
- Physical Liquid Sorbent
- Highly selective for H₂S and CO₂
- CO₂ is produced at "some" pressure

Key Challenges:

- Complex, integrated power process
- Additional process (WGS) to get high capture rates
- Current technology (Selexol) requires cooling and reheating

Pulverized Coal Oxyfuel Combustion Technology Opportunities

*Materials of Construction

Advanced Combustion Systems

- A Supercritical PC, Current Amine
- C Supercritical PC, Amine + Adv. Comp.
- E Supercritical PC, Adv. CO₂ Membrane
- G USC PC, Adv. Membrane + Adv. Comp.

- **B** Ultrasupercritical PC, Current Amine
- D Supercritical PC, Adv. CO₂ Sorbent
- F USC PC, Adv. Sorbent + Adv. Comp.
- H Advanced Oxycombustion

Office of Fossil Energy

*USC = Ultra-supercritical PC (4,000 psig/1,350°F/1,400°F)

Advanced Gasification Systems

European Technology Platform for Zero Emission Fossil Fuel Power Plants Key Conclusions

- Post 2020, CCS will be cost-competitive with other low-carbon energy technologies
- CCS is applicable to both coal- and natural gas-fired power plants
- All three CO₂ capture technologies could be competitive once
- successfully demonstrated
- Early strategic planning of large-scale CO₂ transport infrastructure
- is vital to reduce costs
- A risk-reward mechanism is needed to realize the significant aquifer potential
- for CO₂ storage
- CCS requires a secure environment for long-term investment
 Office of Fossil Energy

http://www.zeroemissionsplatform.eu/library/publication/165-zep-cost-report-summary.html

European Technology Platform for Zero Emission Fossil Fuel Power Plants CCS Costs •CO, Capture

Hard coal-fired power plants without capture have an LCOE of ~€48/MWh (excluding EUA costs), rising to €65-70/MWh₉ with capture for an OPTI plant.

Natural gas-fired power plants without capture have an LCOE of ~€70/MWh, rising to ~€90/MWh with capture.

•CO₂ Transport

Typical costs for a short onshore pipeline (180 km) and a small volume of CO₂(2.5 Mtpa) are just over €5/tonne of CO₂. This reduces to ~€1.5/tonne of CO₂ for a large system (20 Mtpa).

Offshore pipelines are more expensive at ~€9.5 and €3.5/tonne of CO_2 respectively, for the same conditions. If length is increased to 500 km, an onshore pipeline costs €3.7/tonne of CO_2 and an offshore pipeline ~€6/tonne of CO_2 .

http://www.zeroemissionsplatform.eu/library/publication/165-zep-cost-report-summary.html

The LCOE Of Integrated CCS Projects Compared To The Reference Plants W/O CCS

http://www.zeroemissionsplatform.eu/library/publication/165-zep-cost-report-summary.html

Would Advanced CCS Technologies Dispatch?

 EIA uses the National Energy Modeling System (NEMS) to project energy-economic-environmental impacts of policy through 2035

Advanced Technology Benefits

- Increased Power Plant Efficiency
- Minimal Increase in Cost of Electricity (COE)
- Avoided Costs
- Reduced Consumption of Fossil Fuels
- Better Environment
- Improvement in Quality of Life for All

Areas For International Cooperation

- OEDC Capture, Transport and Storage Technology Partnerships
- Transfer of Technology to Non-OEDC Countries
- Development and Demonstration of Advanced CO₂
 Capture Technologies
- Large-Scale Demonstration of CO₂ Storage
- Global Geological Storage Database
- Global Risk Assessment Partnership
- Public Outreach and Education

For Additional Information

Charles Taylor +1- 412-386-6058 –or– +1-304-285-0232 charles.taylor@netl.doe.gov

Office of Fossil Energy www.fe.doe.gov

NETL www.netl.doe.gov

