

Expert's Group on R&D Priority Setting and Evaluation

Performance Metric Framework (PMF): Synthesis and Opportunities to Add Value to the IEA Process

John T. Peterson Office of Performance Analysis and Evaluation Office of the Chief Financial Officer U.S. Department of Energy john.peterson@hq.doe.gov

> 17 November, 2011 International Energy Agency Paris, France

17 November 2011

Disclaimer

"The views expressed in this briefing are the personal views of the author, and do not represent the views of the U.S. Government or the U.S. Department of Energy"

Background

- Metrics Successes
 - IEA collects regular data including:
 - Public investment in R&D
 - Deployment and generation/production progress
 - End-use efficiency, deployment, and intensity
 - Many additional metrics
 - Member countries and others when possible
 - This year: Significant expansion of countries and metrics

Current Metrics Constraints

- Some metrics difficult to collect
- Limited time to collect for each CEM
 - Some metrics may require multiple years to improve methodology/availability
- Many differences between countries' approaches to metrics and to fostering energy technology progress
 - Are state-owned companies included?
 - State/regional investments?
 - Subsidies?
 - IEA has solutions to many of these already, but new metrics will come with new differences
- Some countries do not report

Objectives

- This Meeting
 - <u>Near Term</u>: Provide Informed Input to IEA's ETP 2012 and its Section on "Technology Progress" to be Previewed at the Next Clean Energy Ministerial, London, in April 2012
 - <u>Long Term</u>: Contribute to Enhanced Framework of Metrics for Routinely Monitoring and Measuring Technology Progress
- PMF Objectives
 - Enable discussion of optimal metrics strategy
 - Work towards long-term, integrated set of metrics
 - For monitoring progress towards clean energy economy
 - Foster progress towards better metrics and data collection
- Presentation Objectives
 - Begin identifying high-priority metrics
 - Criteria for high-priority metrics
 - Background and limitations
 - Discuss limitations and usefulness of possible metrics, including definitions
 - Discuss possible initiatives to improve metrics

Status of PMF

- Initial metrics outlined for 14 technology areas, five life cycle stages
- Initial selection of high priority metrics
- Initial selection of additional target metrics
- Remaining work
 - Refine draft metrics and priorities
 - Formulate proposal(s) to Secretariat

Criteria

- Criteria for framework metrics
 - Understandable
 - Relevant
 - Complete
 - Consistent

- Quantitative
- Accurate
- Timely
- Feasible

- Criteria for high-opportunity framework metrics
 - Strength: Degree to which this metric forecasts accurately
 - Forecasts further into future
 [Leading/Lagging (1) symbol)]
 - Not targeted by IEA (*symbol)
 - Partial: Collected for some technologies, or may be included in general policy review
- Other factors of interest
 - Data available for comparison
 - Accuracy/precision
 - Data availability

Data Availability						
	Recent data already existing					
	and available that is sufficient					
Α	to quantify the metric					
	Partial and/or less-recent data					
В	is currently available					
	Data not readily available but					
	could be gathered via research					
С	or other sources near term					
	Data not available and difficult					
	to quantify metric, even by					
D	approximation, near term					

Solar PV

Sample Metrics for Measuring Progress toward a Global Clean Energy Economy

PV Metrics Table, Representing Generation

Solar PV

				IEA			Data	Oppor-	
Candidate Metric	Unit	Strength	Leading/Lagging	Gathering	Comparison	Precision	Availability	tunity	
Public RD&D investment in PV technologies	\$/yr	Med-High	Leading-1	Yes	Roadmap	Medium	В		
Private RD&D investment in PV technologies	\$/yr	Med-High	Leading-2	No	Roadmap	Low	В	√	
Technology Readiness									
Unsubsidized LCOE (\$/kWh) and capital cost (\$/kW) from new PV installations in a)					BLUE Map +				
utility, b) commercial, and c) residential sectors	\$/kWh; \$/kW	High	Leading-4	Partial	Roadmap	Low-Med	В		
Maximum PV efficiency (%) for next generation technologies achieved in lab and									
average annual improvement (%)	%	Medium	Leading-3	Yes	Roadmap	Medium	В		
Market Readiness									
Total value of subsidies issued for PV	\$/yr	High	Coincident-5	Yes	Trends	Med-High	С		
Percent of G20 countries with grid integration policies for PV deployment	%	Medium	Leading-3	Possible	Trends	High	С		
Capacity and production of PV component manufacturing plants	MW/yr	Medium	Leading-4	No	BLUE Map	Med-High	С		
Share of PV power generation meeting a quota obligation system	%	Medium	Leading-4	No	Trends	Med-High	В		
Funding for training and outreach to create an educated PV workforce among									
government planners, industry builders, consumers, etc.	\$/yr	Med-Low	Leading-3	No	Trends	Medium	С		
Market Transformation									
					BLUE Map +				
Installed PV a) capacity (MW) and b) generation (TWh/yr)	MW; TWh/yr	High	Coincident-5,6	Yes	Roadmap	High	Α		
Annual growth rates of PV a) capacity and b) generation	%/yr	High	Leading-4	Calculated	BLUE Map	High	А		
Learning rate (% cost reduction for each doubling of cumulative installed PV capacity)	%	Medium	Leading-2	Yes	BLUE Map	Med-High	В		
Market capitalization of PV companies	\$	Medium	Leading-4	No	Trends	Medium	С		
Impacts									
GHG emissions avoided	MtCO2e/yr	High	Lagging-6	Calculated	BLUE Map	High	С		
Life cycle environmental impact score of PV systems	score	Medium	Leading-4	No	Trends	Med-High	D		
Number of employees in PV workforce	#	Low	Leading-4	No	Trends	Med-High	В		

Energy Efficient Heating and Cooling Equipment

Sample Metrics for Measuring Progress toward a Global Clean Energy Economy

HVAC Metrics Table

Energy Efficient Heating & Cooling Equipment

				IEA			Data	Oppor-
Candidate Metric		Strength	Leading/Lagging	Gathering	Comparison	Precision	Availability	tunity
Resources								
Public RD&D investment in energy efficient heating and cooling equipment	\$/yr	Med-High	Leading-1	Yes	Roadmap	Medium	C	
Private RD&D investment in energy efficient heating and cooling equipment	\$/yr	Med-High	Leading-2	No	Roadmap	Low	D	✓
Technology Readiness								
Typical payback period for retrofitting existing heating/cooling system with energy efficient					BLUE Map +			
system	yr	High	Leading-4	No	Roadmap	Medium	В	
Average installed efficiency of a) electric heat pumps, b) gas-engine heat pumps, c) CHP, d)					BLUE Map +			
solar thermal, and e) AC systems	%	Med-High	Leading-3	Partial	Roadmap	Medium	Α	✓
Installed costs of a) electric heat pumps, b) gas-engine heat pumps, c) CHP, d) solar thermal,					BLUE Map +			
and e) AC systems	\$/kW	High	Leading-4	Partial	Roadmap	Medium	В	✓
Market Readiness								
Percent improvement, weighted by energy usage, compared to 2000 of mandatory								
minimum energy performance standards for heating/cooling equipment sold in G20								
countries	%	High	Leading-3	Yes	Trends	High	С	
Number of G20 countries with labeling programs for heating and cooling equipment, tracked								
by categorical, endorsement, and other	#	Med-High	Leading-3	Yes	Roadmap	High	В	
Average value of incentives issued per high efficiency heating and cooling unit	\$/unit	High	Coincident-5	Yes	Trends	Med-High	С	
Market Transformation								
Global sales of new energy efficient heating and cooling equipment	units/yr	High	Coincident-5	Yes	BLUE Map	High	В	
Learning rate for capital costs (% cost reduction associated with cumulative doubling in sales								
of high efficiency heating and cooling equipment)	%	Medium	Leading-2	No	Trends	Med-High	В	
Average energy use of new heating and cooling equipment sold	kWh/yr	Medium	Leading-4	Yes	Trends	Medium	C	
Percent of households with high efficiency heating/cooling system	%	Medium	Coincident-5	Possible	Trends	Medium	С	
Impacts								
Energy demand and GHG emissions avoided from use of high efficiency heating and cooling								
equipment	MtCO2e/yr	High	Lagging-6	No	BLUE Map	High	С	
Number of employees in energy efficient heating and cooling workforce	#	Low	Leading-4	No	Trends	Med-High	D	

Energy Storage – Vehicle Batteries (EV, HEV, PHEV)

Sample Metrics for Measuring Progress toward a Global Clean Energy Economy

Vehicle Batteries Table

Energy Storage - Vehicle Batteries (EV, HEV, PHEV)

			Leading/	IEA			Data	Oppor-
Candidate Metric	Unit	Strength	Lagging	Gathering	Comparison	Precision	Availability	tunity
Resources								
Public RD&D investments in battery technologies	\$/yr	Med-High	Leading-1	Yes	Roadmap	Medium	В	
Private RD&D investment in battery technologies	\$/yr	Med-High	Leading-2	No	Roadmap	Low	D	1
Technology Readiness						-		
Incremental capital cost of EV, HEV, PHEVs compared to conventional ICE vehicle of								
comparable size and performance (light duty)	%	High	Leading-4	Possible	BLUE Map	Med-High	В	✓
Average fuel economy difference compared to conventional ICE vehicle of comparable								
size and performance (light duty)	%	Med-High	Leading-4	Possible	BLUE Map	Medium	В	✓
Battery specific power	kW/kg	Med-High	Leading-3	Possible	Trends	Med-High	В	✓
Battery power density	kW/L	Med-High	Leading-3	Possible	Roadmap	Med-High	В	✓
Battery specific energy	kWh/kg	Med-High	Leading-3	Possible	Roadmap	Med-High	В	1
Battery energy density	kWh/L	Med-High	Leading-3	Possible	Roadmap	Med-High	В	✓
Estimated cost of recharging infrastructure	\$/car	Med-High	Leading-3	No	Trends	Medium	В	
Average recharging time for EV and PHEVs	hrs/100 km	Medium	Leading-3	No	Roadmap	Med-High	В	
Battery life expectancy	cycles; yrs	Medium	Leading-3	Possible	Roadmap	Med-High	C	
Cost of batteries in commercial production	\$/kWh	Med-High	Leading-3	Possible	Roadmap	Medium	А	
Market Readiness								
Average national fuel efficiency standards in G20 countries (light duty)	km/L	Medium	Leading-2	Yes	BLUE Map	High	В	
					Trends, BLUE			
Value of subsidies per electric drive vehicle (EV, HEV, PHEV) among G20 countries	\$/vehicle	High	Leading-4	Yes	Мар	High	В	
Number of nations with national EV/PHEV sales targets	#	Med-Low	Leading-3	Yes	Trends	High	В	
Manufacturing capacity of batteries	units/yr	Medium	Leading-4	Yes	BLUE Map	Med-High	С	
Number of electric charging points among G20 countries	#	Medium	Leading-4	No	Trends	Med-High	C	
Market Transformation								
Annual sales of electric vehicles (EV, HEV, PHEV)	#/yr	High	Coincident-5	Yes	BLUE Map	High	В	
Learning rate (% cost reduction associated with cumulative doubling in capacity)	%	Medium	Leading-2	No	Trends	Med-High	С	
Share of vehicle fleet that is electric (EV, HEV, PHEV)	%	Medium	Coincident-5	Calculated	BLUE Map	High	В	
Impacts								
GHG emissions avoided from use of electric vehicles (EV, HEV, PHEV)	MtCO2/yr	High	Lagging-6	Calculated	BLUE Map	High	A/B	
Reduction in petroleum consumption for transportation compared to BAU	bbls/yr	High	Lagging-6	Calculated	BLUE Map	High	В	
Number of employees in vehicle energy storage workforce	#	Low	Leading-4	No	Trends	Med-High	С	

Additional Information On:

- Private investment
- Technology costs
- Possible additional metrics

A REAL PROPERTY OF THE REAL PR

Private Investment Metrics Problems

- Private Energy R&D estimates
 - Battelle: \$12B and growing worldwide
 - Bloomberg: \$14B+ "Corporate RD&D" vs \$7B to \$21B "Govt R&D"
 - NSF: \$5.3B in 2007 in US
- Problem:
 - We get mostly demonstration and deployment metrics
 - Why?
 - Publicly-held companies report single R&D number, if that
 - What part is related to clean energy?
 - What clean energy technologies?
 - What stage of RDD&D?
 - Privately-held companies report nothing
 - Government-owned company reporting varies
 - Demonstration and deployment frequently announced publicly
- Other issues: Sovereign wealth funds (\$3.9 Tril)
 - Do they fund energy R&D? Are their contributions included?

New Investment in Clean Energy

Asset finance Public markets VC/PE

Note: Excludes corporate and government R&D, and small distributed capacity. Not adjusted for re-invested equity

Source: Bloomberg New Energy Finance *Source: "Trends in investments in global energy research, development, and demonstration", Gallagher, et. al.

UNEP/Bloomberg Joint Project

FIGURE 29: CORPORATE AND GOVERNMENT R&D RENEWABLE EN-ERGY INVESTMENT BY TECHNOLOGY, 2010, AND TOTAL GROWTH ON 2009, \$BN

FIGURE 30: CORPORATE AND GOVERNMENT R&D RENEWABLE ENERGY INVESTMENT BY REGION, 2010, AND GROWTH ON 2009, \$BN

Source: Global Trends in Renewable Energy Investment 2011, UNEP/BNEF

Technology Costs

- Factors affecting costs
 - Learning curves, deployment
 - R&D expenditures
 - Commodity prices
 - Steel up 5-8%/yr (US)
 - Cement up 2-3%/yr (US)
 - Business cycles
 - Technology life cycle

Source: Rubin et al.; IJGGC, 2007

Q2 2009 Q3 2009 Q4 2009 Q1 2010 Q2 2010 Q3 2010 Q4 2010 Q1 2011 Q2 2011 Q3 2011

- STEG Parabolic Trough
- --- PV Thin Film
- --- PV c-Si Tracking

Prices are in nominal dollars

- STEG Parabolic Trough w/Storage
- --- PV c-Si

Source: Bloomberg New Energy Finance, Except ETP, SRREN ranges SRREN data in 2005\$, data from 2009, 2010

Q2 2009 Q3 2009 Q4 2009 Q1 2010 Q2 2010 Q3 2010 Q4 2010 Q1 2011 Q2 2011 Q3 2011

Prices are in nominal dollars

Source: Bloomberg New Energy Finance, **Except ETP, SRREN ranges** SRREN data in 2005\$, data from 2009, 2010

Dealing with Variability

Carbon forecasts from the BNEF European Carbon Model with a 2020 horizon \$74/tCO2. Coal and nat gas prices from the US Department of Energy EIA Annual Energy Outlook 2011. % change represents change in mid from Q2 2011.

Source: Bloomberg New Energy Finance

Ernst & Young Attractiveness Indices

19%

Utilities/Renewable-energy-country-attractivenessindices

 Not part of the framework, but could have good effects on CEM

Project Size

Opportunity Summary

- Additional metrics:
 - Private R&D investment by technology
 - Consider private sources/partners
 - Cost/benefit measures for non-generation technologies
 - HVAC costs and efficiency
 - HEV/EV/PHEV additional cost and savings metrics
 - Battery technology metrics
- Partnering with private industry
- Steps to the Future
 - Pick small set of high-priority metrics
 - Document methodology, assumptions, definitions
 - Develop strategy for data collection
 - Present to IEA in summary form

Questions for Discussion

- What metrics are best indicators of progress?
- What are the elements of a framework?
 - Integrated/effective
 - Monitoring, evaluating, communicating progress
- What can we learn from the private sector?
- What approaches are most effective
 - Communicating progress evaluation
 - Accomplishing change in investment
 - Achieving desired outcomes

17 November 2011

DETAILS

Biomass Technology LCOEs (\$/mWh)

Prices are in nominal dollars

Source: Bloomberg New Energy Finance

Q2 2009 Q3 2009 Q4 2009 Q1 2010 Q2 2010 Q3 2010 Q4 2010 Q1 2011 Q2 2011 Q3 2011

- Necessary Improvements to Our Metrics:
 - Standard, open methodology
 - Documented assumptions
 - Quantified uncertainty, variability