



#### Imperial Centre for Energy Policy and Technology







## Presenting the Future

An assessment of future costs estimation methodologies in the electricity generation sector

Dr Robert Gross, Imperial College and UKERC

### What UKERC does....

The UK Energy Research Centre is the focal point for UK research on sustainable energy. It takes an independent, whole-systems approach, drawing on engineering, economics and the physical, environmental and social sciences.....

.....the Centre's role is to promote cohesion within the overall UK energy research effort. It acts as a bridge between the UK energy research community and the wider world, including business, policymakers and the international energy research community and is the centrepiece of the Research Councils Energy Programme



#### UKERC Technology and Policy Assessment

- A core function of the UKERC since 2004
- Provide independent, policy-relevant assessments addressing key issues and controversies in energy
- Develop accessible, credible and authoritative reports relevant to policymakers, other stakeholders and wider public debate
- Approach based on a systematic search and appraisal of the evidence base, synthesis, and expert and peer review



### **TPA** reports



# 'Presenting the future' Preliminary questions from scoping note

- How do past estimates and expectations of future costs compare with experience to date?
- Do methodologies differ in terms of their forecasting accuracy?
- Have methodological approaches changed?
- How robust are future costs estimation methodologies?
- How susceptible are the different approaches to exogenous factors?
- What are the strengths and weaknesses of the methodologies?



### Why estimates matter

- Key input to policy:
  - Successive Energy White Papers
  - Stern Review
  - CCC Renewable Energy Review
  - Energy system models such as MARKAL/TIMES
- Help identify which technologies merit support (and how much)
- Policy can also bear upon costs, which bear upon policy...



## **Approach**

- Systematic review of the literature on cost estimation and forecasting methodologies
- Six technology case studies:
  - Nuclear
  - Combined Cycle Gas Turbine (CCGT)
  - Coal and Gas-fired Carbon Capture & Storage (CCS)
  - Solar Photovoltaics (PV)
  - Onshore Wind
  - Offshore Wind

#### Available at:

http://www.ukerc.ac.uk/support/tiki-index.php?page\_ref\_id=2863

Synthesis and conclusions



# Forecasting future costs: Methods and approaches

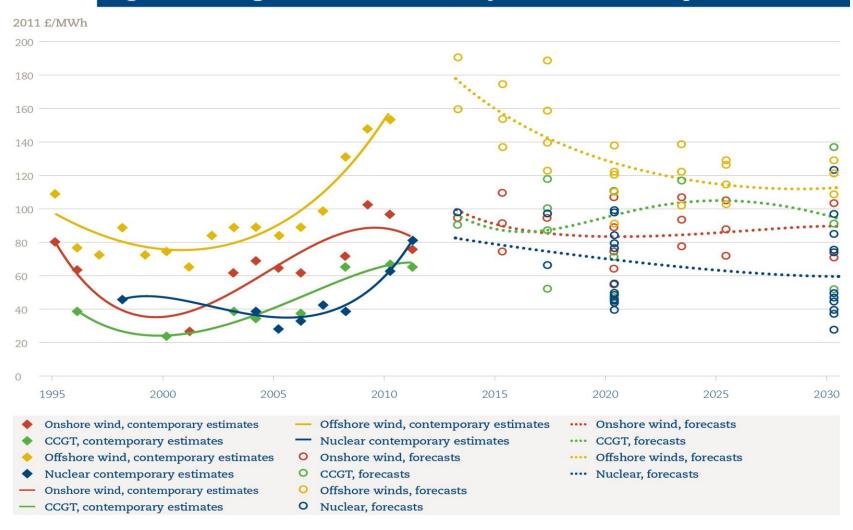
- Experience curves some headlines
  - An evolving literature and discourse....
  - Grounded in empirical observations that learning and cost reductions do happen
  - Can help identify the level of investment and deployment required to drive down costs but...
  - Are susceptible to uncertainties over selection of the correct starting point, learning and deployment rates
  - Concern over the use of proxy values from similar technologies
  - May be more applicable to some technology characteristics than others (modular vs. large-scale)
  - Can be overwhelmed by other factors



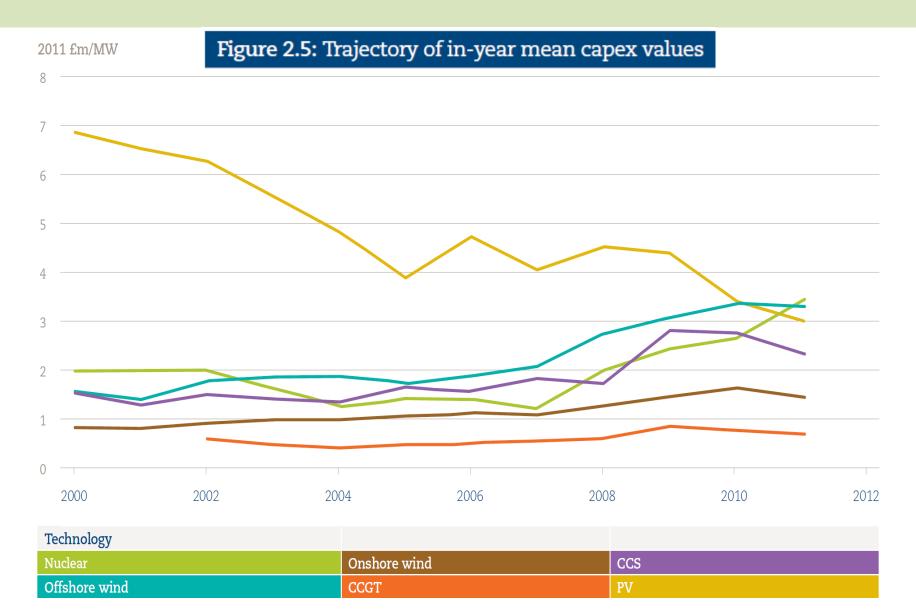
# Experience curve key issues – more detail on issues and problems

- Cost floors and discontinuities
- Deployment assumptions
- Costs, prices, currency and inflation
- System boundaries
- Compound systems
- Modular vs large scale
- Time horizons and 'technology forgetting'
- Other sources of cost reduction
  - learning by researching, spillovers, autonomous change/time, policy
- Single vs multifactor learning




# Forecasting future costs: methods and approaches

- Engineering assessment (and expert elicitation, stakeholder workshops, etc.):
  - Can inform detailed parametric models
  - Don't need to rely on previous trends
  - Can allow for discontinuities, but...
  - Expert opinions can differ
  - May suffer manipulation / excessive optimism
  - Still difficult to get right for emerging technologies




# Cost trajectories - LCOE

Figure 2.4: Range of LCOE estimates, in-year mean and UK-specific forecasts



# Cost trajectories - capex



#### The case studies

- Nuclear
- Combined Cycle Gas Turbine (CCGT)
- Coal and Gas-fired Carbon Capture & Storage (CCS)
- Onshore Wind
- Offshore Wind
- Solar Photovoltaics (PV)



#### Nuclear

Figure 4.1: In-year means of nuclear forecast capex values worldwide, comparing pre and post 2005 estimates

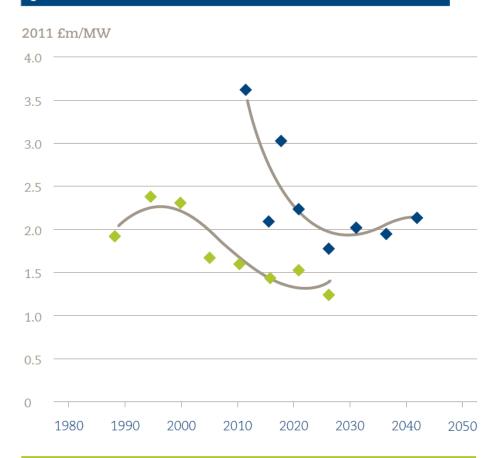
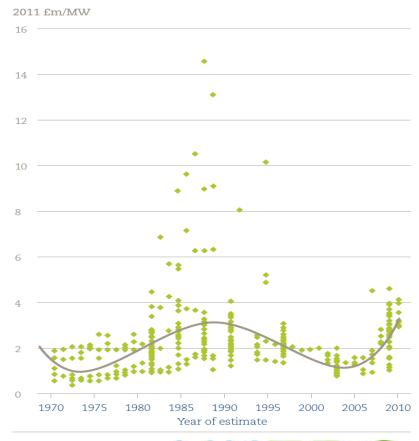




Figure 4.2: Range of estimated nuclear contemporary capital costs worldwide over last four decades





Capex Forecasts made after 2005



#### **CCGT**

Figure 4.3: Range of international forecasts of LCOE for CCGT up to and post-2005

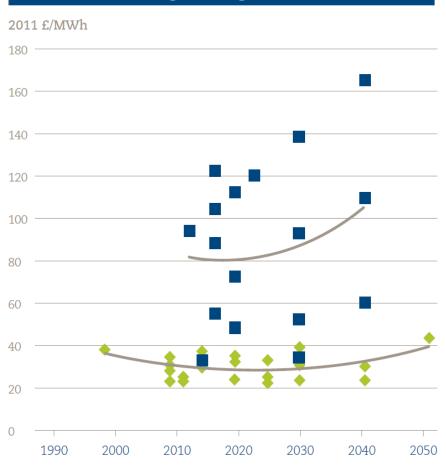
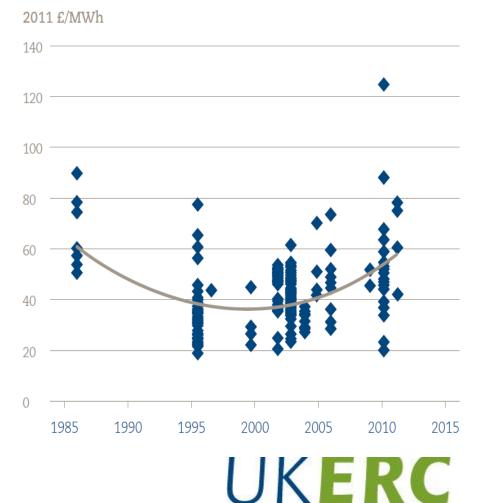




Figure 4.4: Range of worldwide out-turn estimates of LCOE for CCGT

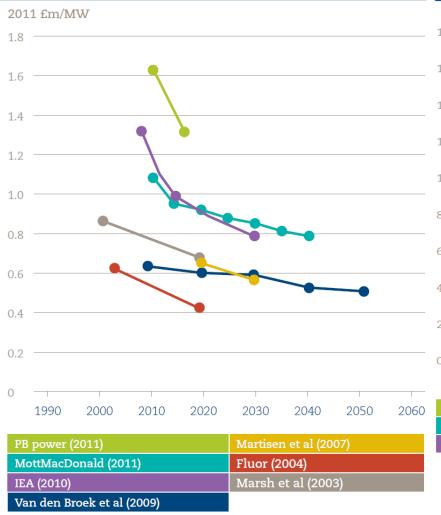
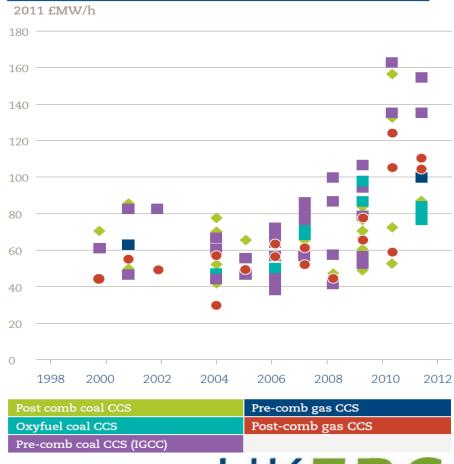


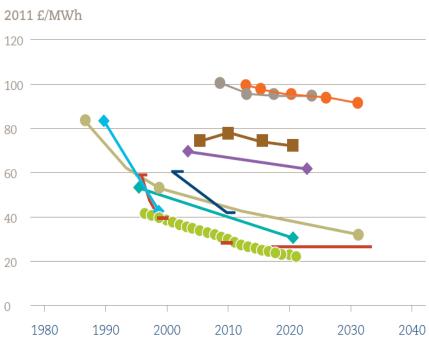
Forecasts published up to 2005

Forecasts published after 2005

#### CCS

Figure 4.5: Range of forecast estimates of future capital costs of post-combustion gas CCS



Figure 4.7: Range of contemporary levelised cost estimates of CCS since 2000





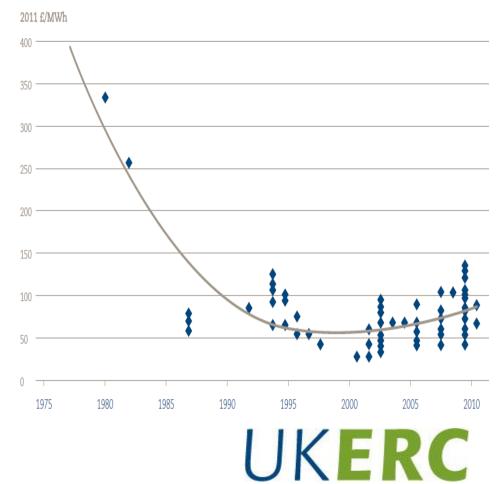

#### **Onshore Wind**

Figure 4.8: Range of levelised cost expectations for onshore wind



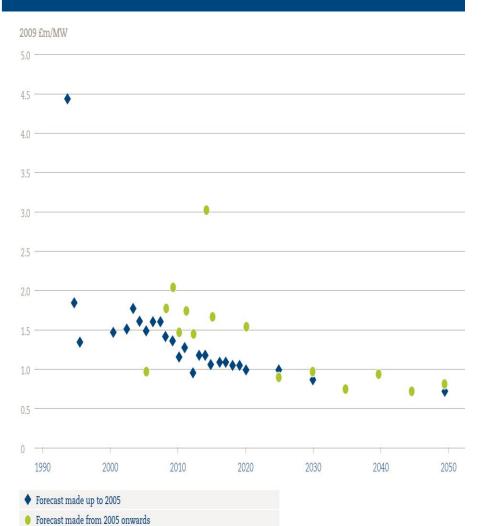
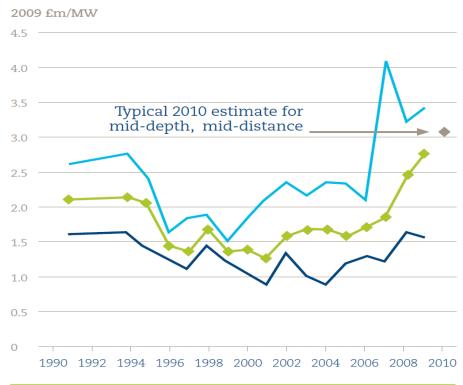

| Parsons Brinckerhoff (2004) | IEA (2003)            |
|-----------------------------|-----------------------|
| Neji (1999)                 | DoE/EPRI (1997)       |
| DTI/E&Y (2007)              | IEA (1993)            |
| Flavin and Lenssen (1990)   | Mott MacDonald (2010) |
| EWEA/Greenpeace (1999)      | DEGC (2012)           |

Figure 4.10: Range of levelised costs of onshore wind since 1980




### Offshore wind





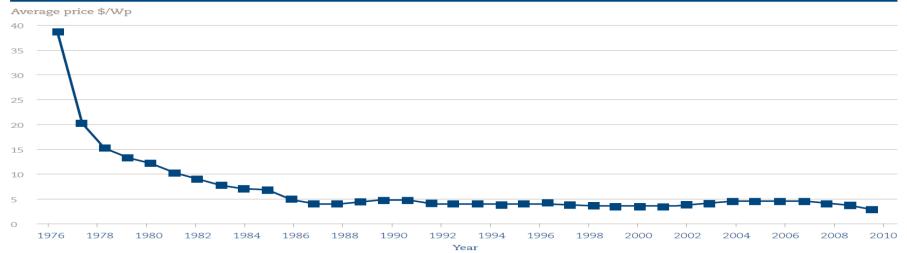
#### Figure 4.12: Range of offshore wind actual capex, 1990 to 2009





In-year Min

In-year Max


UKERC

#### PV

**Table 4.1:** Engineering assessment and experience curve projections of future PV module production costs adapted from (Schaeffer et al. 2004)

| Study              | Year of study | Year of projection | Engineering<br>assessment (\$/Wp) | Experience curve<br>(\$/Wp) |
|--------------------|---------------|--------------------|-----------------------------------|-----------------------------|
| JBL86-31 target    | 1978          | 1986               | 1.63                              | 0.86                        |
| JBL86-31 Cz        | 1985          | 1988               | 2.17                              | 6.35                        |
| JBL86-31 Dentretic | 1985          | 1992               | 1.02                              | 2.80                        |
| EPRI 1986          | 1986          | 2000               | 1.50                              | 0.79                        |
| MUSIC FM 1996      | 1996          | 2000               | 1.00                              | 4.07                        |

Figure 4.13: PV module price historical trend



UKERC

#### General observations

Past experience shows both exogenous 'sideswipes' and endogenous factors can override learning effects & economies of scale etc

- Example exogenous factors:
  - Commodity prices increases e.g. steel, copper, silicon
  - Fuel price increases e.g. coal and gas
  - Cost of finance
  - · Unfavourable currency movements
- Example endogenous factors:
  - Increased safety, or environmental, requirement e.g. nuclear, or coal FGD
  - Lack of competition re components e.g. OSW turbine market
  - Supply chain constraints e.g. components and support/installation services
  - Greater depth and distance e.g. UK OSW
  - Increased O&M
  - Disappointing reliability = reduced availability = poor load factors
- Experience curve uncertainties & appraisal optimism
- Can be overwhelmed by other factors and exogenous shocks
- Need for reliable and disaggregated data and sufficient volumes and time
- Acknowledge the uncertainties explicitly
- Recognise that it is an inherently stochastic process



#### Conclusions

- Clear empirical evidence that the cost of electricity generation can fall through time and as deployment rises – learning happens. But
  - learning is not inevitable and quality of projection a product of data, assumptions, judgement, etc...
  - learning can be overwhelmed by other factors temptation to focus on potential for cost reductions risks ignoring prosaic issues such as supply chain constraints
  - Initial roll-out of a technology may result in short-term bottlenecks, 'teething trouble' and other issues -short term costs may rise before they can fall
- Some of the uncertainties revealed by the case studies are exogenous, inherently unpredictable and may exhibit high volatility what to do about these?
- Some of the endogenous cost drivers are more 'known' and lend themselves more readily to future projection - but this is not always well done
- One size does not fill all technology specifics are paramount to cost reduction prospects. Small, mass produced and modular = 'better' at learning?
- Communication of uncertainty is key. There is a trend towards improved 'appraisal realism' in recent analyses



# Final thoughts

- We should not be surprised when (not if) our forecasts are wrong
- Whilst cost reductions from learning can and do happen they can still be overwhelmed by other factors
- Understandable temptation to focus on potential for cost reductions risks ignoring more prosaic issues such as supply chain constraints and regulatory regimes
- Some recognition that costs can rise in the early stages of a technology, but this rarely shows up in the headline numbers
- Fundamental tension between inherent uncertainties and the need to make decisions now
- Not so much about picking winners based on current forecasts more about the political will required to follow through when costs (almost inevitably) diverge from a smooth downward trajectory



#### UK Energy Research Centre

+44 (0)20 7594 1574

www.ukerc.ac.uk

<u>robert.gross@imperial.ac.uk</u> <u>philip.heptonstall@imperial.ac.uk</u>

