Reducing Energy Use through Transport Planning in the United States: Proven and Promising Practices

presented to IEA Experts' Group on R&D Priority Setting and Evaluation

presented by Chris Porter, Cambridge Systematics, Inc.

23 May 2013

Transportation leadership you can trust.

Overview

- U.S. Context and Trends
- Effectiveness of Energy/GHG Reduction Strategies
- How do We Get There?
- Research Needs

U.S. energy and climate change mitigation experience

- National-scale assessment studies
 - » Moving Cooler, USDOT Report to Congress, National Renewable Energy Lab - Transportation Energy Futures
- State and Metropolitan Planning Organization (MPO) GHG & energy inventories, mitigation plans, & tools
 - » Massachusetts, Maryland, Oregon, Southern California, Northern New Jersey

Transportation declines slightly to about onequarter of U.S. energy consumption

Energy consumption by sector, quadrillion BTU

Source: Energy Information Administration, Annual Energy Outlook 2013 (Reference Case)

Transport energy use expected to hold steady, but modal contributions change

Energy consumption, quadrillion BTU

Source: Energy Information Administration, Annual Energy Outlook 2013 (Reference Case)

Rapid growth in freight truck activity expected

Growth in Activity by Mode (index to 2010)

Source: Energy Information Administration, Annual Energy Outlook 2013 (Reference Case)

U.S. has low urban densities and high distance traveled

6

U.S. has >2x distance traveled per capita compared to European countries

VMT has stopped growing ... will the trend last?

Source: Sundquist, E., State Smart Transportation Initiative, 2013

Urban development trends are changing – at least in some areas

Large metropolitan regions with the greatest increase in share of infill home construction

Source: U.S. EPA (2012), Residential Construction Trends in America's Metropolitan Regions.

Effectiveness of Energy/ GHG Reduction Strategies

Moving Cooler – GHG reduction potential of ~50 strategies

Travel Reduction

- Pricing
- Land use and smart growth
- Nonmotorized transportation
- Public transportation improvement
- Regional ride-sharing, carsharing and commuting
- Regulatory strategies

System Efficiency

- Operational and intelligent
 transportation
 systems (ITS)
- Bottleneck relief and capacity expansion
- Multimodal freight

Moving Cooler – sample results

Source: Moving Cooler, Prepared for Urban Land Institute by Cambridge Systematics, 2009

Northern New Jersey – 68% GHG reduction feasible by 2050

Source: Greenhouse Gas Mitigation Plan developed by Cambridge Systematics for North Jersey Transportation Planning Authority, 2012

Combined impact of demand management/ efficient driving strategies could be 7-15%

	Percentage of On-Road	
Strategy	Energy/GHG Reduction	
Pricing		
PAYD Insurance (Mandatory)	2.5%	
VMT Fee – \$0.02-\$0.05/Mile 1.0%-2.5%		
Congestion Pricing	0.5%-1.1%	
Transit Improvements	0.4%-1.1% (2030); 0.6%-2.0% (2050)	
Nonmotorized Improvements	0.3%-0.8%	
Parking Management	0.3%	
Work Site Trip Reduction/Employee Commute Options	0.2%-1.1%	
Telework and Alternative Work Schedules	0.9%-1.1%	
Ridesharing and Vanpooling	0.1%-2.0%	
Carsharing	0.1%-0.2%	
Educational and Marketing Campaigns	0.3%-0.5%+	
Eco-Driving and Maintenance	1.1%-5.0%	
Idle Reduction	0.1%-0.4%	
Speed Limit Reduction/Enforcement	1.7%-2.7%	
Combined Effects	7.0%-15.3%	

Source: Effects of Travel Reduction and Efficient Driving on Transportation Energy Use and Greenhouse Gas Emissions, prepared by Cambridge Systematics for National Renewable Energy Laboratory, 2012

Land use changes are key to long-term benefits

	TRB Special Report 298 (2009)	Moving Cooler (2009)	Growing Cooler (2007)
2050 % new/re- development	41-55%	64%	67%
% of new devel. that is "compact"	25-75%	43-90%	60-90%
VMT in compact development	5-25% lower	23% lower	30% lower
Urban light-duty VMT reduction	1-11%	2-13%	12-18%
Transportation GHG/ energy reduction	0.6 - 6.5%	2.0 - 3.4%	7 – 10%

Sources: TRB (2009); Cambridge Systematics, Inc. (2009); Ewing, et al (2007), as summarized in U.S. DOT Report to Congress: Transportation's Role in Reducing U.S. Greenhouse Gas Emissions (2010)

Another look at land use impacts

- Shift population from lower-density, single-use areas to higher-density, mixed-use areas (up to 15% in 2030, 30% in 2050)
- Pedestrian environment improvements

Source: Built Environment Analysis Tool developed by CS for National Renewable Energy Laboratory, 2012

Conclusions regarding transportation energy and GHG reduction potential in the U.S.

- Recently-adopted fuel economy standards will reduce surface transport energy by over one-third by 2035, compared to a previously flat baseline
- More aggressive vehicle and fuel technology strategies could reduce energy use by over half
- Land use and travel demand/efficiencies provide smaller, but still important benefits
 - » Land use could achieve up to 10% reduction in VMT by 2050, 6% reduction in energy/GHG
 - » Other travel reduction/demand management could achieve 7-15% reduction collectively (surface transportation)

How do We Get There?

The U.S. planning context

National (Federal)	 Vehicle and fuel standards and fuel pricing Transport planning – procedural requirements, funding, and technical assistance
State	 Transport investment priorities (non-metropolitan) Roadway design standards Freeway/arterial systems management Roadway and fuel pricing
Regional (MPO)	 Transport investment priorities (metropolitan) Transit investment Freeway/arterial systems management Voluntary cooperation on land use, etc.
Local (City, County,Town)	 Land use planning Local transport investment priorities & design standards Bicycle and pedestrian infrastructure

Some energy reduction measures look familiar...

"Transportation Control Measures" in the 1990 Clean Air Act Amendments

- 1. Improved public transit
- 2. HOV lanes
- 3. Employer-based transportation management
- 4. Trip-reduction ordinances
- 5. Traffic flow improvements
- 6. Park-and-ride
- 7. Auto-restricted zones
- 8. High-occupancy vehicle programs
- 9. Spatial or temporal restriction on motorized vehicle use of roads

- 10. Bicycle parking and lanes
- 11. Idle control programs
- 12. Extreme cold-start emissions control
- 13. Flexible work schedules
- 14. Programs to facilitate nonautomobile travel
- 15. Non-motorized paths
- 16. Vehicle scrappage

... some are fairly new

Demand Management

- VMT fees and congestion pricing
- Pay-as-you-drive insurance
- "Smart" parking management
- Dynamic ridesharing
- Car-sharing and bike-sharing programs
- Real-time, multimodal travel information
- Location-based marketing

System Efficiency

- Eco-driving with real-time feedback
- Dynamic eco-routing
- Eco-adaptive traffic signals & corridor management
- Low-emissions zones

Planning innovations – California's SB 375

- All metro areas required to set GHG reduction targets for passenger vehicles for 2020 and 2035 (vs. 2005)
 - » Met through transport planning and land use strategies
 - » Target reductions of 5-8% in 2020, 10-15% in 2035 (larger areas)
 - » Achieve 2.8% of state's GHG reduction goal for 2020 (5 MMT)
- Required to adopt "Sustainable Communities Strategy" as part of Regional Transportation Plan
 - » Approval by state air agency = environmental review exemptions for certain types of development
 - » Alternative Planning Strategy (APS) does not meet target

Planning innovations – regional visioning and scenario planning

- Multi-sectoral transportation, land use, housing, economic development, environment
- Extensive public and stakeholder involvement process
- GIS-based data and technical tools to support indicator development

Planning innovations (example) – Sacramento Blueprint

- Increased residential density, mixed-use areas, expanded transit
- 25% reduction in VMT, 15% reduction in CO₂ from base case by 2050

Source: Sacramento Area Council of Governments

Planning innovations – Transit-oriented development

• Federal criteria for transit-supportive land use, plans & policies - required in assessment of new transit project funding since late 1990s

Challenges to reducing transport energy use

- Historically auto-oriented development patterns
- Fragmented/multi-level decision-making environment
- Strong private property rights ethic
- No appetite for Federal requirements or for pricing of externalities
- Gas is still cheap

Opportunities

- Shifting demographic trends and lifestyle preferences
- Changing economics
- Interest and innovations in voluntary, regional-scale planning
- "Leader" states stepping in where Federal government cannot
- New technology to support travel efficiencies

Research Needs

- Continued demonstration, deployment, and evaluation of new technologies to promote travel reduction/efficient driving
 - » Pricing (congestion, VMT, PAYD)
 - » Dynamic ridesharing
 - » Eco-driving & eco-system operations
 - » Real-time information
- Strategy interactions land use, transit, pricing, TDM
- Long-term impacts of telework, teleshop, etc. (including location decisions)
- Urban form measures and impacts (economic, accessibility, etc.)

