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• We focus on
• Battery Electric Vehicles (BEVs)
• Internal Combustion Vehicles (ICVs) using Carbon-Neutral Synthetic Fuels (CNSFs)

• CNSFs break down into
• Advanced biofuels (via gasification)
• Electrofuels

Biofuels, electrofuels and BEVs
as options to decarbonise road transport

Cost of electrification increases
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• Are electrofuels, biofuels and BEVs complementary or competing technologies?

• We choose light-duty vehicles (LDVs) as the hard case for fuels.

Biofuels, electrofuels and BEVs
as options to decarbonise road transport

Cost of electrification increases
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• We compare
• Near-term costs from the consumer perspective.
• Scale-up challenges and impacts from the transport system perspective.

Biofuels, electrofuels and BEVs
as options to decarbonise road transport

Cost of electrification increases
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Petroleum
$70/bbl

Where are we today?

Batteries
$200 - $250/kWh

Cellulosic biofuels
?

Electrofuels
?
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Petroleum
$70/bbl

Where are we today?

Audi e-gas
6 MW electricity
3.2 MW synfuel

$27M investment

GoBiGas
30 MW biomass
20 MW synfuel

$180M investment

Batteries
$200 - $250/kWh

Cellulosic biofuels
?

Electrofuels
?

We scale up demonstration plant data
(escalated to $2017) to estimate the
cost of CNSFs at commercial scale
(150 MWsynfuel)
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• Various distortions bedevil comparisons between BEVs and ICVs.
• Cost parity (equal-cost) means that, at the very least, the “fuel” cost of the BEV

should be no higher than that of comparable ICVs.
• For a BEV the “fuel” cost includes electricity, but also the interest and depreciation

of the battery.
• This is a minimal requirement since there are additional hurdles that BEVs would

need to overcome (e.g. limited range and slow charging rates).
• Also, using efficient rather than tax-inclusive market prices has significant impact on

the relative costs of ICVs and BEVs.
• For a list of our assumptions, see “Supplementary material” at the end of the

presentation.

How to compare BEVs and ICVs?
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

*USDOE 2016 Billion-ton report figure ES.8

Biomass residues:
• $40/dry ton ($8/MWh)*
• Capacity factor 85 %
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

Onshore wind:
• $30/MWh**
• Capacity factor 55 %**
Biomass residues:
• $40/dry ton ($8/MWh)*
• Capacity factor 85 %

*USDOE 2016 Billion-ton report figure ES.8
**Lazard’s Levelized cost of energy analysis – version 11.0 (2017)
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

Thin film PV:
• $43/MWh**
• Capacity factor 32 %**

Onshore wind:
• $30/MWh**
• Capacity factor 55 %**
Biomass residues:
• $40/dry ton ($8/MWh)*
• Capacity factor 85 %

*USDOE 2016 Billion-ton report figure ES.8
**Lazard’s Levelized cost of energy analysis – version 11.0 (2017)
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

Thin film PV:
• $43/MWh**
• Capacity factor 32 %**

Onshore wind:
• $30/MWh**
• Capacity factor 55 %**
Biomass residues:
• $40/dry ton ($8/MWh)*
• Capacity factor 85 %

*USDOE 2016 Billion-ton report figure ES.8
**Lazard’s Levelized cost of energy analysis – version 11.0 (2017)

Prospective
production cost
estimates
($2017) based
on demonstration
plant data
(ranges due to
uncertainty of
cost scaling
exponents) for
First-of-a-Kind
plants at
150 MWsynfuel
scale, if built
today to best
resource
locations in the
U.S.
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

Thin film PV:
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• Capacity factor 32 %**
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

$105/bbl

$390/bbl

*USDOE 2013 Fiscal Year 2012 Annual Progress Report for Energy Storage R&D
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

$105/bbl

$390/bbl
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*USDOE 2013 Fiscal Year 2012 Annual Progress Report for Energy Storage R&D
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Carbon-neutral fuels (CNSF) vs battery electric vehicles

$105/bbl

$390/bbl

65 $/bbl

240 $/bbl
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*USDOE 2013 Fiscal Year 2012 Annual Progress Report for Energy Storage R&D
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At today’s battery cost:
• Short-range BEV < $105/bbl
• Long-range BEV < $390/bbl

Setting cost targets for carbon-neutral synthetic fuels

At 2022 DOE target cost:
• Short-range BEV < $65/bbl
• Long-range BEV < $240/bbl
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Resource needs for supplying 26 EJ/yr CNSF in 2050

Global transport energy use in
2050 according to IEA (2017)
2DS modelling:

• 59 EJ/yr of petroleum fuels,
• 26 EJ/yr of biofuels, and
• 17 EJ/yr of electricity.

Current biomass
resource & Low-C
power generation
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Resource needs for supplying 26 EJ/yr CNSF in 2050

Global transport energy use in
2050 according to IEA (2017)
2DS modelling:

• 59 EJ/yr of petroleum fuels,
• 26 EJ/yr of biofuels, and
• 17 EJ/yr of electricity.

Current biomass
resource & Low-C
power generation

*Biomass resource from AR5 (IPCC, 2014) that
“agrees on a technical bioenergy potential of around
100 EJ, and possibly 300 EJ and higher”.

Low-C power generation calculated from EIA (2017).

*
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Relationship of power and transport sector emissions
for supplying 26 EJ/yr CNSF
Transport emissions  were
6.79 Gt CO2 in 2010.

IEA 2DS modelling:
Power sector carbon
intensity is 40gCO2/kWh in
2050.
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Relationship of power and transport sector emissions
for supplying 26 EJ/yr CNSF
Transport emissions  were
6.79 Gt CO2 in 2010.

IEA 2DS modelling:
Power sector carbon
intensity is 40gCO2/kWh in
2050.
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• At today’s battery costs, all sustainable gasoline substitutes that can be produced
roughly below $400/bbl are competitive against a long-range BEV.
• Even $125/kWh would not outcompete CNSF including electrofuels.

• However, short-range BEVs competitive with CNSFs already today and may become out
of reach if the DOE target is achieved.

• VRE reaching grid parity with fossil energy in some locations does NOT mean electrofuels
will soon be reaching parity with petroleum.

• Near-term learning potential limited for electrofuels as costs governed by electricity price?
• In the longer term solid-oxide electrolyser technology possibly an option to reduce costs

and resource requirements.
• The viability of electrofuels is governed by the prospects of future power markets:

• A dramatic expansion of cheap low-carbon electricity is needed,
• Ties the fate of transport sector emissions closely with the power sector.

Conclusions
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To calculate the equal-cost curves in CNSF vs BEV figure we adopt an approach similar to that developed in Newbery
and Strbac (2016), which seeks to strip out the various distortions that bedevil comparisons between battery electric
vehicles (BEVs) and internal combustion vehicles (ICVs).
Our assumptions:
We use $0/tCO2 as emission costs, 1.26 for the wholesale gasoline price multiplier (1.18 for diesel), $0.07/l gasoline
retail margin ($0.09/l for diesel), 2.36 gCO2/l gasoline carbon content (2.68 gCO2/l for diesel), and $0.033/l gasoline
pollution cost ($0.099/l for diesel).
The BEV battery is sized to allow either 135 or 500 km single-charge range, while assuming 10-year vehicle life and
170,000 km lifetime battery range (17,000 km annual distance travelled).
Electric motors convert 75% of the energy supplied into the batteries to power the wheels and move the vehicle 5 km
per every kWh supplied. For gasoline vehicles, 30 % efficiency is assumed (35 % for diesel vehicles).
We assume savings from a BEV drivetrain relative to ICV to be $1232, while a home charger costs $1130.
The cost of electricity is 14 dollar cents per kWh assuming smart charging (70% off-peak & 30% peak), and the
discount rate is 8%. For currency conversions, we use 1.13 EUR to USD exchange rate (average for 2017).

Supplementary material 1/2
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Assumptions used to calculate the break-even oil price for first-of-a-kind CNSF plants:

• Delivered cost of biomass feedstock $40 - $120/dry ton (assuming 19 MJ/kg lower heating value) from US DOE
2016 Billion-ton report figure ES.8.

• Electricity generation data for different energy sources from Lazard’s Levelized cost of energy analysis – version
11.0 (2017).

• Assumptions used for all plants: 150 MW (LHV) liquid hydrocarbon output, wholesale fuel price multiplier 1.22
(average for gasoline and diesel), 20 yr economic life, 8% Weighted Average Cost of Capital (WACC).

• For an electrofuel plant producing liquid hydrocarbons, we assume: 40 % (LHV) fuel efficiency, central estimate
for total capital investment (TCI) $583 million with a range of $407 - $834 million, annual operating and
maintenance cost 2% of TCI.

• For a biofuel plant producing liquid hydrocarbons, we assume: 50 % (LHV) fuel efficiency, central estimate for TCI
$845M with a range of $626 - $1140 million, annual operating and maintenance cost 4% of TCI.
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