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Abstract Carbon-neutral  synthetic fuels (CNSFs) could offer sustainable
alternatives to petroleum distillates that currently dominate the transportation sector,
and address the challenge of decarbonising the fuel mix. CNSFs can be divided into
synthetic biofuels and ‘electrofuels’ produced from COz and water with electricity. We
provide a framework for comparing CNSFs to battery electric vehicles (BEVs) as

i.I. alternatives to reduce vehicle emissions. Currently, all three options are significantly
[lJ more expensive than conventional vehicles using fossil fuels, and would require
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Biofuels, electrofuels and BEVs
as options to decarbonise road transport

« Wefocus on

« Battery Electric Vehicles (BEVS)
* Internal Combustion Vehicles (ICVs) using Carbon-Neutral Synthetic Fuels (CNSFs)

e CNSFs break down into

» Advanced biofuels (via gasification)
» Electrofuels
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Biofuels, electrofuels and BEVs
as options to decarbonise road transport

» Are electrofuels, biofuels and BEVs complementary or competing technologies?

 We choose light-duty vehicles (LDVs) as the hard case for fuels.

EEEEEE

Cost of electrification increases
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Biofuels, electrofuels and BEVs
as options to decarbonise road transport

« We compare

* Near-term costs from the consumer perspective.
« Scale-up challenges and impacts from the transport system perspective.

-

Cost of electrification increases
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Where are we today?

Petroleum Batteries Cellulosic biofuels Electrofuels
$70/bbl $200 - $250/kWh

?

\-_-/

|

|
1

B3 UNIVERSITY OF |[Energy Policy
4P CAMBRIDGE | Research Group VTT 2018 6




Where are we today?

Petroleum Batteries Cellulosic biofuels Electrofuels
$70/bbl $200 - $250/kWh ? ?
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We scale up demonstration plant data GoBiGas Audi e-gas

(escalated to $2017) to esti_mate the 30 MW biomass 6 MW electricity

((:f;(t, ?\;V(\:/:ii?) at commercial scale 20 MW synfuel 3.2 MW synfuel
$180M investment $27M investment
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How to compare BEVs and ICVs?

« Various distortions bedevil comparisons between BEVs and ICVs.

« Cost parity (equal-cost) means that, at the very least, the “fuel”’ cost of the BEV
should be no higher than that of comparable ICVs.

* For a BEV the “fuel” cost includes electricity, but also the interest and depreciation
of the battery.

« This is a minimal requirement since there are additional hurdles that BEVs would
need to overcome (e.g. limited range and slow charging rates).

» Also, using efficient rather than tax-inclusive market prices has significant impact on
the relative costs of ICVs and BEVs.

* For a list of our assumptions, see “Supplementary material” at the end of the
presentation.
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Carbon-neutral fuels (CNSF) vs battery electric vehicles
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Setting cost targets for carbon-neutral synthetic fuels

At today’s battery cost: At 2022 DOE target cost:
e Short-range BEV < $105/bbl e Short-range BEV < $65/bbl
e Long-range BEV < $390/bbl e Long-range BEV < $240/bbl
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Resource needs for supplying 26 EJ/yr CNSF in 2050
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Resource needs for supplying 26 EJ/yr CNSF in 2050
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“agrees on a technical bioenergy potential of around
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Low-C power generation calculated from EIA (2017).
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Relationship of power and transport sector emissions
for supplying 26 EJ/yr CNSF
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Relationship of power and transport sector emissions
for supplying 26 EJ/yr CNSF
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Conclusions

At today'’s battery costs, all sustainable gasoline substitutes that can be produced
roughly below $400/bbl are competitive against a long-range BEV.

 Even $125/kWh would not outcompete CNSF including electrofuels.

However, short-range BEVs competitive with CNSFs already today and may become out
of reach if the DOE target is achieved.

VRE reaching grid parity with fossil energy in some locations does NOT mean electrofuels
will soon be reaching parity with petroleum.

Near-term learning potential limited for electrofuels as costs governed by electricity price?

* Inthe longer term solid-oxide electrolyser technology possibly an option to reduce costs
and resource requirements.

The viability of electrofuels is governed by the prospects of future power markets:

 Adramatic expansion of cheap low-carbon electricity is needed,
» Ties the fate of transport sector emissions closely with the power sector.
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Supplementary material 1/2

To calculate the equal-cost curves in CNSF vs BEV figure we adopt an approach similar to that developed in Newbery
and Strbac (2016), which seeks to strip out the various distortions that bedevil comparisons between battery electric
vehicles (BEVs) and internal combustion vehicles (ICVs).

Our assumptions:

We use $0/tCO2 as emission costs, 1.26 for the wholesale gasoline price multiplier (1.18 for diesel), $0.07/I gasoline
retail margin ($0.09/1 for diesel), 2.36 gCO2/I gasoline carbon content (2.68 gCO2/I for diesel), and $0.033/l gasoline
pollution cost ($0.099/I for diesel).

The BEV battery is sized to allow either 135 or 500 km single-charge range, while assuming 10-year vehicle life and
170,000 km lifetime battery range (17,000 km annual distance travelled).

Electric motors convert 75% of the energy supplied into the batteries to power the wheels and move the vehicle 5 km
per every kWh supplied. For gasoline vehicles, 30 % efficiency is assumed (35 % for diesel vehicles).

We assume savings from a BEV drivetrain relative to ICV to be $1232, while a home charger costs $1130.

The cost of electricity is 14 dollar cents per kWh assuming smart charging (70% off-peak & 30% peak), and the
discount rate is 8%. For currency conversions, we use 1.13 EUR to USD exchange rate (average for 2017).
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Supplementary material 2/2

Assumptions used to calculate the break-even oil price for first-of-a-kind CNSF plants:

Delivered cost of biomass feedstock $40 - $120/dry ton (assuming 19 MJ/kg lower heating value) from US DOE
2016 Billion-ton report figure ES.8.

Electricity generation data for different energy sources from Lazard’'s Levelized cost of energy analysis — version
11.0 (2017).

Assumptions used for all plants: 150 MW (LHV) liquid hydrocarbon output, wholesale fuel price multiplier 1.22
(average for gasoline and diesel), 20 yr economic life, 8% Weighted Average Cost of Capital (WACC).

For an electrofuel plant producing liquid hydrocarbons, we assume: 40 % (LHV) fuel efficiency, central estimate
for total capital investment (TCI) $583 million with a range of $407 - $834 million, annual operating and
maintenance cost 2% of TCI.

For a biofuel plant producing liquid hydrocarbons, we assume: 50 % (LHV) fuel efficiency, central estimate for TCI
$845M with a range of $626 - $1140 million, annual operating and maintenance cost 4% of TCI.

B3 UNIVERSITY OF |[Energy Policy
QP CAMBRIDGE | Research Group VITT 2018 21




