

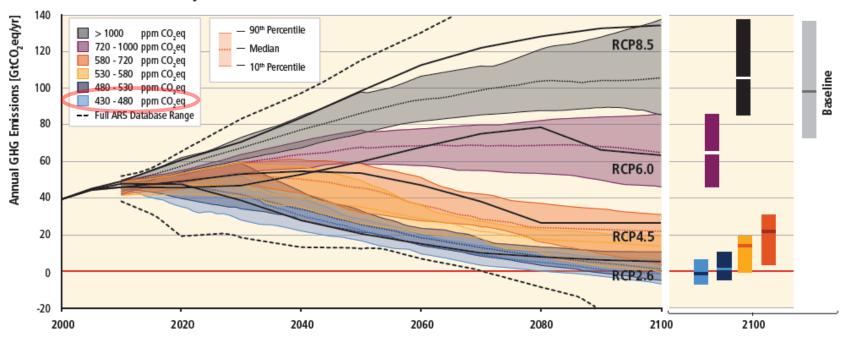
The aviation sector's need for renewable fuels

Arne Roth

Future Technologies and Ecology of Aviation Lead of Alternative Fuels

Outline

- >> Climate protection targets and the resulting need for renewable jet fuel
- >> Aviation-specific technical requirements and quantitative demand
- >> Key criteria for renewable jet fuel
- >> Economic competitiveness
- >> Conclusions

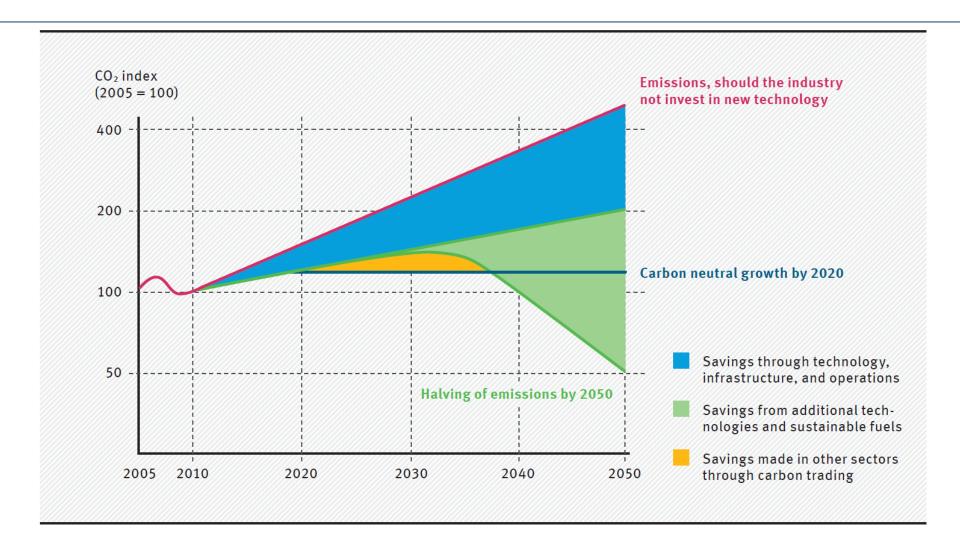

Setting the scene: "Paris Agreement" (COP 21) Bauhaus Luftfahrt Neue Wege.

>> 2015 United Nations Climate Change Conference (COP 21), Paris

"[...] holding the increase in the global average temperature to well below 2° C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C above pre-industrial levels [...]"

Setting the scene: "Paris Agreement" (COP 21) Bauhaus Luftfahrt Neue Wege.

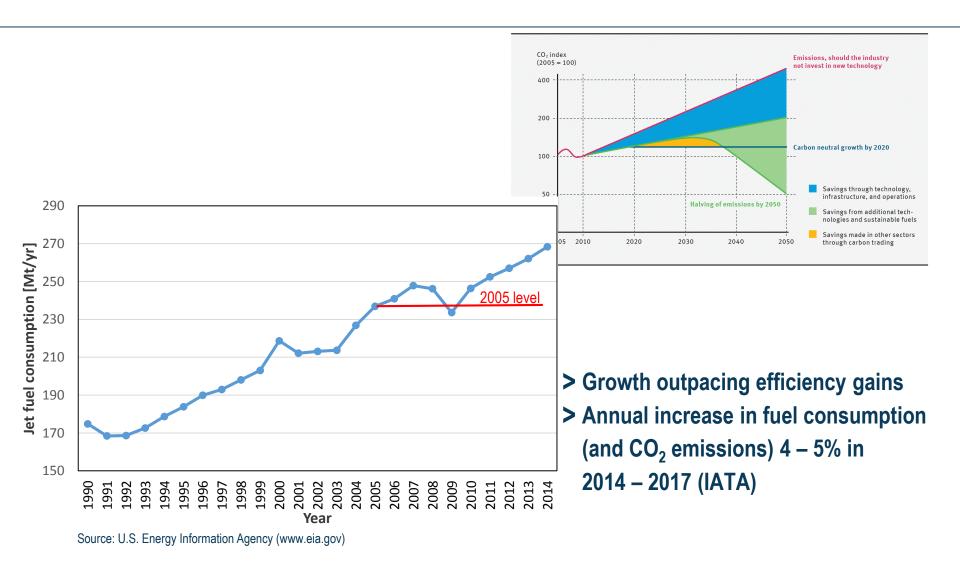
> 2 °C target: 66% probability @ 430 – 480 ppm CO₂ by 2100

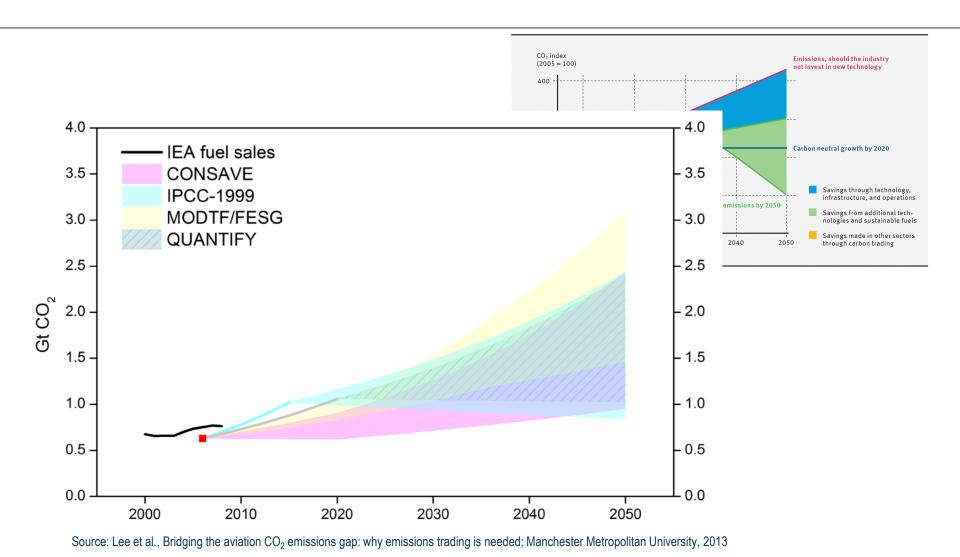

> Today: 407 ppm already

> Reduction of annual emissions: 41 – 72% by 2050, 78 – 118% by 2100 (rel. to 2010)

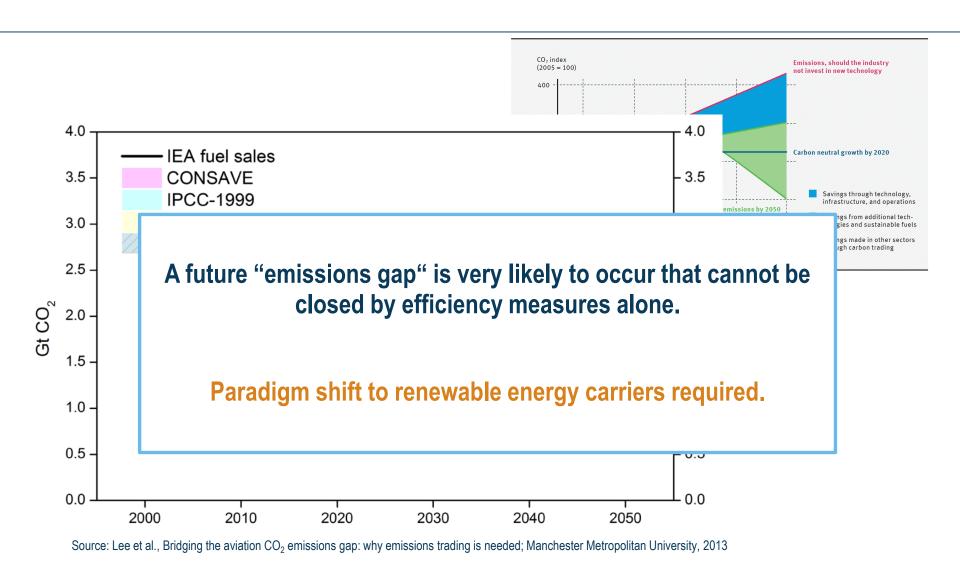
[&]quot;Assessing Transformation Pathways," in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2014

Aviation industry's targets (ATAG targets)




Source: UBA, LBST, BHL, 2016 adapted from ATAG 2012

Aviation industry's targets vs. current demand & Bauhaus Luftfahrt



Future development of demand and emissions? Bauhaus Luftfahrt Neue Wege.

Future development of demand and emissions? Bauhaus Luftfahrt Neue Wege.

Renewable energy options for aviation

>> Aviation will continue to rely on liquid fuels

- > Fully electric flight limited by battery mass
 - > Bauhaus Luftfahrt Concept Study Ce-Liner
 - > Task: Cover 80% of air traffic (900 nm range)
 - > Would require specific energy > 1 kWh/kg

- > From fuel perspective: No change of primary energy carrier, essentially an efficiency measure
- > Liquid cryogenic gasses (LH₂ and LNG)
 - > Conceptually feasible, but most studies find no or marginal benefits, as turbines remain technology of choice

Sources: M. Hornung, Ce-Liner – Case Study for eMobility in Air Transportation, Aviation Technology, Integration and Operations Conference. Los Angeles. 12.8.2013 EU-H2020 Project Centreline: http://cordis.europa.eu/project/rcn/209713 en.html; M.K. Bradley, Subsonic Ultra Green Aircraft Research: Phase II N+4 Advanced Concept Development, 2012. doi:2060/20150017039, Tupolev Tu-155 experimental aircraft: wikipedia

Renewable energy options for aviation

- >> Aviation will continue to rely on liquid fuels
 - > Fully electric flight limited by battery mass
 - > Bauhaus Luftfahrt Concept Study Ce-Liner

Renewable jet fuel must be compatible with current a/c technology and fuel systems (drop-in)

- > From fuel perspective: No change of primary energy carrier, essentially an efficiency measure
- > Liquid cryogenic gasses (LH₂ and LNG)
 - > Conceptually feasible, but most studies find no or marginal benefits, as turbines remain technology of choice

Sources: M. Hornung, Ce-Liner – Case Study for eMobility in Air Transportation, Aviation Technology, Integration and Operations Conference. Los Angeles. 12.8.2013 EU-H2020 Project Centreline: http://cordis.europa.eu/project/rcn/209713 en.html; M.K. Bradley, Subsonic Ultra Green Aircraft Research: Phase II N+4 Advanced Concept Development, 2012. doi:2060/20150017039, Tupolev Tu-155 experimental aircraft: wikipedia

>

Technical requirements

Designation: D1655 - 10

Standard Specification for Aviation Turbine Fuels¹

- >> Developed based on assumption that jet fuel is produced from crude oil
- >> Conventional Jet A-1/Jet A composed of hydrocarbons
 - > Alkanes (paraffins; linear, branched, cyclic)
 - > Aromatics

$$H_3C$$
 H_2
 H_2
 H_2
 H_3
 H_4
 H_5
 H_5
 H_7
 H_8
 H_8
 H_9
 H_9

Technical requirements

Designation: D1655 - 10

Standard Specification for Aviation Turbine Fuels¹

- >> Developed based on assumption that jet fuel is produced from crude oil
- >> Conventional Jet A-1/Jet A composed of hydrocarbons
 - > Alkanes (paraffins; linear, branched, cyclic)
 - > Aromatics

Designation: D7566 - 12a

Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons¹

- >> Requirements for synthetic components of drop-in capable alternative jet fuel:
 - > Hydrocarbons (alkanes, aromatics)
 - > No oxygenated compounds (alcohols, esters, etc.)
 - > "Conventional" boiling range
 - > Diverse composition (for high blending ratio)

Technical requirements

Designation: D1655 - 10

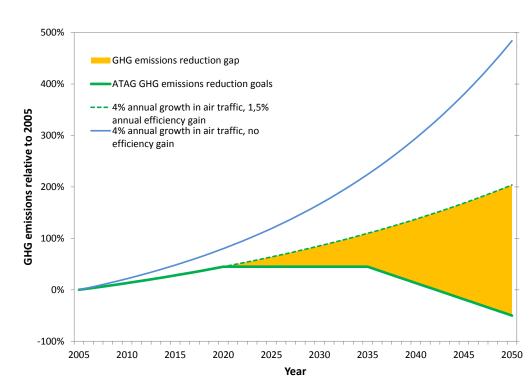
Standard Specification for Aviation Turbine Fuels¹

- >> Developed based on assumption that jet fuel is produced from crude oil
- >> Conventional Jet A-1/Jet A composed of hydrocarbons
 - > Alkanes (paraffins; linear, branched, cyclic)
 - > Aromatics

Designation: D7566 - 12a

Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons¹

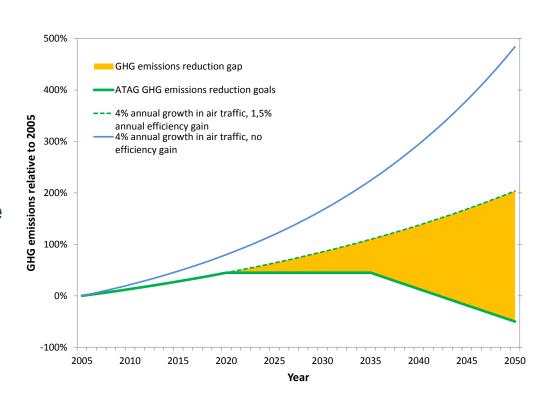
>> Requirements for synthetic


Alternative (renewable) jet fuel must be a "synthetic version" of conventional jet fuel

- > No oxygenated compounds (alcohols, esters, etc.)
- > "Conventional" boiling range
- > Diverse composition (for high blending ratio)

The "emissions gap": How much is needed?

- >> Translation of GHG reduction targets into requirements w.r.t. alternative fuels
 - > Estimation of future jet fuel demand
 - > 4% annual growth
 - > 1.5% annual efficiency gain
 - > Tripling of fuel demand by 2050:
 - > 600 Mt/yr (World)
 - > 130 Mt/yr (EU)


Pertinent literature available, for example:

Ploetner at el. "Fulfilling long-term emission reduction goals in aviation by alternative fuel options: An evolutionary approach", 2018 Aviation Technology, Integration, and Operations Conference, AIAA Aviation Forum, (AIAA 2018-3990), https://doi.org/10.2514/6.2018-3990.

The "emissions gap": How much is needed?

- >> Translation of GHG reduction targets into requirements w.r.t. alternative fuels
- >> 2050
 - > For 50% GHG emission rel. to 2005:
 -83% spec. GHG emissions of entire fuel mix (Europe: 130 Mt/yr; World: 600 Mt/yr).

Pertinent literature available, for example:

Ploetner at el. "Fulfilling long-term emission reduction goals in aviation by alternative fuel options: An evolutionary approach", 2018 Aviation Technology, Integration, and Operations Conference, AIAA Aviation Forum, (AIAA 2018-3990), https://doi.org/10.2514/6.2018-3990.

Key criteria for renewable jet fuel

>> Suitability

- > Drop-in capability
- > (liquid hydrocarbons in jet fuel range; "sustainable versions" of conventional jet fuel)

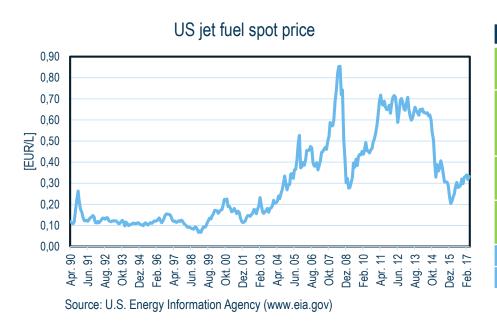
>> Economic competitiveness

> Under given economic boundary conditions

>> Sustainability

- > Highly favorable GHG balance
- > No violation of other sustainability principles

>> Scalability


- > Several 100 Mt per year
- > Essentially full substitution

PtL-derived jet fuel (potentially) meets all "S" criteria;

But economic competitiveness is only possible under regulated market conditions.

Economic competitiveness

Production pathway	Feedstock	MFSP (EUR L-1)
HEFA	Soybean oil	1.04
	Used cooking oil	1.02
Gasification/FT	Municipal solid waste	1.00
	Forestry residues	1.33
	Wheat straw	1.93
AtJ	Forestry residues	1.82
	Wheat straw	2.74
DSHC (SIP)	Forestry residues	3.65
	Wheat straw	4.91
Power-to-Liquids (PtL)	Electric energy, CO ₂ , water	1.47
Solar-thermochemical	Solar heat, CO ₂ , water	2.23

Sources: Bann et al., *Bioresour. Technol.* **2017**, 227, 179–187. de Jong at al., *Biofuels, Bioprod. Biorefining* **2015**, 9 (6), 778–800. Schmidt et al., *Chemie Ing. Tech.* **2018**, 90 (1–2), 127–140. Falter at el., *Environ. Sci. Technol.* **2016**, 50 (1), 470–477.

>> Renewable jet fuel (biogenic and non-biogenic) currently not competitive

Renewable Jet Fuel: Situation today

- >> ASTM certification
 - > FT-SPK, HEFA-SPK, SIP, AtJ
- >> Renewable fuels in civil avation
 - > Lufthansa 2011 (burnFAIR project; HEFA-SPK)
 - > Many other airlines with similar projects
- >> Airports: Regular supply
 - > Alternative jet fuel in common hydrant systems
 - > Oslo Airport, Los Angeles, Toronto (others to follow)
- >> Off-take agreements
 - > Fulcrum (FT-SPK from MSW): Cathay Pacific (1.52 Mt) & Air BP (1.4 Mt) over 10 years
 - > Red Rock Biofuels (FT-SPK from forestry residues): FedEx & Southwest Airlines over 8 years

Renewable Jet Fuel: Situation today

- >> ASTM certification
 - > FT-SPK, HEFA-SPK, SIP, AtJ

> Lufth

> Many

> Alter

UT: Renewable aviation fuels mainly used on a

project basis

>> Airpo

No large-scale implementation in day-to-day operation realized

to date

> Oslo - mport, Loo rangeres, referre to tenero to remove

>> Off-take agreements

- > Fulcrum (FT-SPK from MSW): Cathay Pacific (1.52 Mt) & Air BP (1.4 Mt) over 10 years
- > Red Rock Biofuels (FT-SPK from forestry residues): FedEx & Southwest Airlines over 8 years

Hamburg

Conclusions

- >> As all other sectors, aviation has to drastically reduce its GHG emissions
- >> Aviation needs renewable drop-in fuels to meet its GHG targets
 - > "Renewable versions" of conventional jet fuel
- >> Renewable jet fuel production must be scalable AND sustainable
 - > Sustainable in terms of emissions, water and land use, social issues etc.
- >> PtL-derived jet fuel holds great potential
 - > Suitable, scalable and potentially sustainable
- >> Economic competitiveness is key challenge
 - > Not necessarily cost competitiveness
 - > Sustainable and scalable options generally more expensive than conventional jet fuel

Contact

>> Arne Roth

Lead of Alternative Fuels
Bauhaus Luftfahrt e.V.
Willy-Messerschmitt-Str. 1
82024 Taufkirchen
Germany

>> Tel.: +49 (0) 89 3 07 48 49 – 46
Fax: +49 (0) 89 3 07 48 49 – 20
arne.roth@bauhaus-luftfahrt.net

>> http://www.bauhaus-luftfahrt.net

