

The IEA data work on calorific values

Roberta Quadrelli, Head, Energy Balances, Emissions, Efficiency, Prices IEA Energy Data Centre

Joint IPCC/IEA Expert Meeting on Data, Paris, December 2017

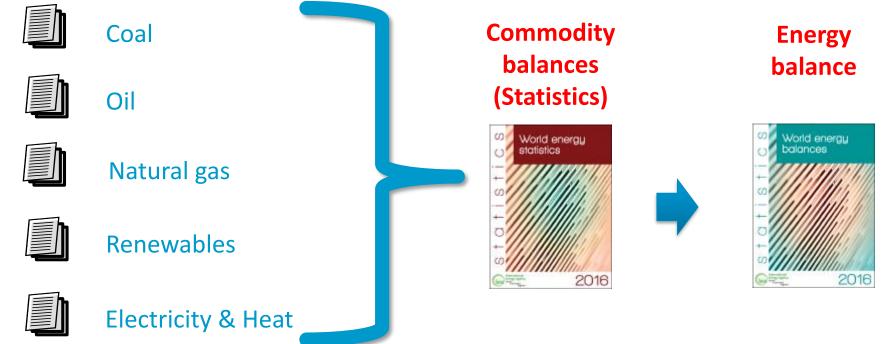
The IEA data work on calorific values

Calorific values data: why do we need good data?

The IEA data collection and dissemination

Improving calorific values data quality, globally

Calorific values: why do we need good data?



The IEA collects statistics and develops balances

Annual Questionnaires OR

National publications, reports, websites

Calorific values are a key input to develop energy balances

2015			Mi	llion tonnes	of oil equiva	lant					
SUPPLY AND CONSUMPTION	Coal	Crude oil*	Oil products	Natural gas	Nuclear	Hydro	Geotherm./ Solar/ etc.	Biofuels/ Waste	Electricity	Heat	Total
Production	7.99	130.95	-	34.36	3.02	2.65	4.20	8.62	-	-	191.79
Imports	5.29 e	0.40	34.67	30.17	-	-	-	-	0.14	-	70.6
Exports	-0.00	-62.28	-9.73	-0.02	-	-	-	-	-0.20	-	-72.2
Intl. marine bunkers	-	-	-0.85	-	-	-	-	-	-	-	-0.8
Intl. aviation bunkers	-	-	-3.45	-	-	-	-	-	-	-	-3.4
Stock changes	0.38 e	0.37	0.56	0.15	-	-	-	-	-	-	1.4
TPES	13.65	69.44	21.19	64.64	3.02	2.65	4.20	8.62	-0.06	-	187.3
Transfers	-	-5.98	7.04	-	-	-	-	-	-	-	1.0
Statistical differences	0.31	2.30	0.93	-3.25	-	-	-	-0.00	0.47	-	0.7
Electricity plants	-8.88 e	-	-7.08	-30.39	-3.02	-2.65	-3.99	-1.49	25.40	-	-32.0
CHP plants	-	-	-0.54	-4.20	-	-	-	-0.21	1.36	-	-3.5
Heat plants	-	-	-	-	-	-	-	-	-	-	
Blast furnaces	-0.72 e	-	-	-	-	-	-	-	-	-	-0.7
Gas works	-	-	-0.77	0.49	-	-	-	-	-	-	-0.2
Coke/pat. fuel/BKB/PB plants	-0.09 e	-	-	-	-	-	-	-	-	-	-0.0
Oil refineries	-	-65.96	57.80	-	-	-	-	-	-	-	-8.1
Petrochemical plants	-	0.15	-0.16	-	-	-	-	-	-	-	-0.0
Liquefaction plants	-	-	-	-	-	-	-	-	-	-	
Other transformation	-	0.06	-	-	-	-	-	-	-	-	0.0
Energy industry own use	-0.39 e	-	-5.71	-13.36	-	-	-	-	-1.54	-	-21.0
Losses	-	-	-	-	-	-	-	-	-3.50	-	-3.5

To convert all physical values into a common energy unit

Calorific values determine the quality of balances (and inventories)

Commodity balances	Bituminous coal	Proc	duct 2							
	kt	m3	Net Ca		Bituminous	Produc	et 2			
Production	100		Values		coal TJ/kt	TJ/m3	Energy balance	Bituminous coal	Product 2	
Import	20		Produc	tion	23		(excerpt)	TJ	TJ	
Export	40		Import		25		Production	2300		
Supply	80		Export		22.5		Import	500		
Statistical differences	0						Export	-900		
							Supply	1900		
Input to Electricity	50		Input to Electric		22	_	Statistical differences	200		
							Input to	1100		

Electricity

consumption

600

Final

Final consumption

Need to collect good data for physical quantities AND calorific values

The IEA calorific values: data collection and dissemination

IEA questionnaires: guidance on ranges by type of fuel

ANTHRACITE

Quality: High carbon content (about 90 % fixed carbon). Uses: industrial and residential applications

>23 865 kJ/kg

COKING COAL

Quality: High. Bituminous coal with properties to the production of coke oven coke

Uses: Metallurgical industry

>23 865 kJ/kg

OTHER BITUMINOUS COAL

Quality: Lower carbon content and higher volatile matter (>10%) Uses: Electricity and heat generation, manufacture of cement...

>23 865 kJ/kg

SUB-BITUMINOUS COAL

Quality: High carbon content: high carbon content (about 90 % fixed carbon).

Uses: Electricity and heat generation.

<23 865 kJ/kg >17 435 kJ/kg

LIGNITE

Quality: Low carbon content and higher volatile matter

Uses: Electricity and heat generation

<17 435 kJ/kg

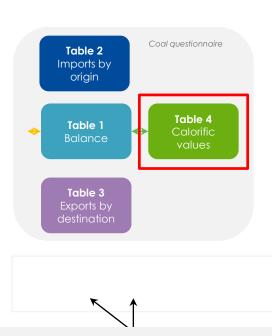
HARD COAL

BROWN COAL

For each fuel, calorific value data may also vary significantly

- over time
- from country to country
- from flow to flow mainly primary products (e.g. trade ≠ consumption)

Note: the IEA uses average regional values for oil products



Calorific values in the IEA annual questionnaires: example for coal

ANNUAL QUESTIONNAIRE COAL

(Solid Fossil Fuels and Manufactured Gases)
IEA - Eurostat - UNECE

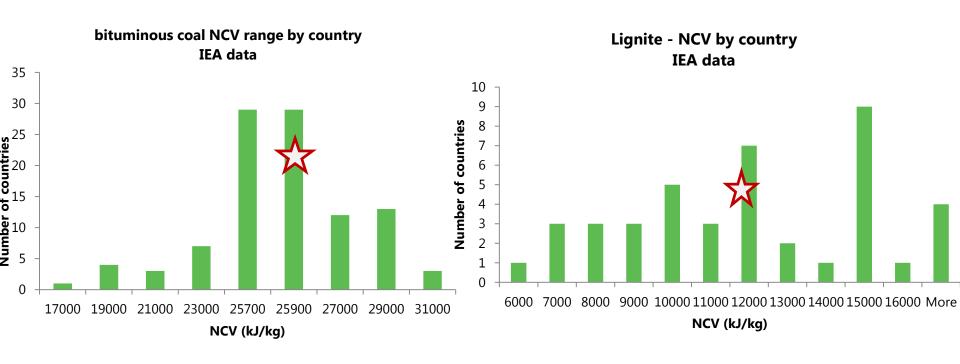
Table 4: Calorific values

- Different calorific values for each flow
- CVs need to be properly balanced to avoid statistical difference in an energy balance
- Estimated Gross calorific value = Net + 5%
- Manufacture gases: reported in TJ (gross)

Country			Anthracite	Coking coal	Lignite
			MJ/tonne	MJ/tonne	MJ/tonne
			A	В	E
Production	s -	0	0	0	
Production	-	0	0	0	
Importo	gros	s -	0	0	0
Imports	net	-	0	0	0
Evporto	gros	s -	0	0	0
Exports	net	-	0	0	0
Jsed in main activity plants	gros	s -	0	0	10230
osed in main activity plants	net	-	0	0	9000
Used in industry	gros	s -	0	0	0
Osed III IIIddstry	net	-	0	0	0
For other uses	gros	s -	0	0	0
l of other uses	net	-	0	0	0

Not all countries submit questionnaires to the IEA. If not, information is more scarce

Typical structure for the IEA database on calorific values


)			World Co	onversion Factor	s (Read-only):1						
NIT: kJ/kg TIME: 2015 COUNTRY (): Aust	tria										
PRODUCT	Anthracite	Coking coal	Other	Sub-bituminous	Lignite	Patent fuel	Coke oven coke	Coal tar	BKB	Peat	Cru
LOW 6			bituminous coal	coal							
Average net calorific value	26,700	28,971	27,414	22,082	9,700	31,000	28,595	36,912	19,800	8,800	
NCV of production	х	Х	Х	X	х	Х	28,595	36,912	х	8,800	
NCV of other sources	X	X	X	x	x	X	×	X	X	X	
NCV of imports	26,700	28,971	27,414	22,082	9,700	31,000	28,595	X	19,800	X	
NCV of exports	X	Х	27,414	X	х	X	X	36,912	х	X	
NCV of coke ovens	X	28,971	X	x	x	X	×	X	X	X	
NCV of blast furnaces	X	X	27,414	×	x	X	28,595	36,912	x	×	
NCV in main activity producer electricity plants	X	Х	26,992	X	X	X	X	X	X	X	
NCV in autoproducer electricity plants	X	X	X	X	X	X	×	X	X	X	
NCV in main activity CHP plants	×	X	26,923	X	X	×	×	x	×	×	
NCV in autoproducer CHP plants	X	X	28,875	X	X	X	×	X	X	X	
NCV in main activity heat plants	X	X	X	X	X	X	X	X	X	X	
NCV in autoproducer heat plants	×	X	×	×	X	×	×	X	×	×	
NCV in industry	X	Х	27,414	22,082	9,700	X	28,595	X	X	X	
NCV for other uses	26,700	29,206	27,414	21,914	9,700	31,000	28,595	36,912	19,800	8,800	

IEA World Energy Balances, 2017

Annual data for around 40 products, country-specific (default if no information available)

Examples of calorific value ranges across countries in IEA data

Significant cross-country variability – and default values for many countries

Improving calorific values data quality, globally

International guidance and cooperation among organisations

Chapter 1: Introduction

Default NCV values to convert from units of 10³ tonnes to units of terajoules are in Table 1.2. These values are based on a statistical analysis of three data sources:

- Annual greenhouse gas inventory submissions of Annex I Parties: UNFCCC Annex-1 countries'
 national submissions in 2004 on 2002 emissions (Table-1A(b) of the CRF). This dataset contains Net
 Calorific Values (NCVs), Carbon Emission Factor (CEF) and Carbon Oxidation Factor (COF) for individual
 fuels for more than 33 Annex 1 countries.
- Emission Factor Database: The IPCC Emission Factor Database (EFDB), version-1, as of December 2003
 contains all default values included in the 1996 IPCC Guidelines and additional data accepted by the EFDB
 editorial board. The EFDB contains country-specific data for NCV and CEF including developing countries.
- IEA Database: International Energy Agency NCV database for all fuels, as of November 2004. The IEA database contains country-specific NCV data for many countries, including developing countries.

The statistical analysis performed on these datasets has been described in detail in a separate document (Kainou, 2005). The same data set was used to compile a table of default values and uncertainty ranges.

2006 IPCC Guidelines for National Greenhouse Gas Inventories

IEA data are a reference in IPCC Guidelines

Energy statistics guidance also links back to IPCC Guidelines

Statistical Commission Forty-second session Background document Available in English only

22-26 February 2011

Item 3(e) of the provisional agenda

Items for discussion and decision: energy statistics

International Recommendations for Energy Statistics (IRES)

Default calorific values

4.48. The default calorific values are provided in Table 4.1 as a reference to countries when no specific calorific values are available. The default calorific values presented below are those used in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006). For a number of products, no calorific values are available in the 2006 IPCC guidelines and thus no value is reported in the table below.

Table 4.1: Default net calorific values for energy products

Net Calorific Values

			(GJ/metric ton)				
				Range			
SIEC Headings			Default value	Lower value	Upper value		
0		Coal					
01		Hard coal					
011	0110	Anthracite	26.7	21.6	32.2		
012		Bituminous coal					
	0121	Coking coal	28.2	24.0	31.0		
	0129	Other bituminous coal	25.8	19.9	30.5		
02		Brown coal					
021	0210	Sub-bituminous coal	18.9	11.5	26.0		
022	0220	Lignite	11.9	5.5	21.6		
03		Coal products					
031		Coal coke					
	0311	Coke oven coke	28.2	25.1	30.2		
	0312	Gas coke	28.2	25.1	30.2		
	0313	Coke breeze					
	0314	Semi cokes	28.2	25.1	30.2		
032	0320	Patent fuel	20.7	15.1	32.0		
033	0330	Brown coal briquettes (BKB)	20.7	15.1	32.0		
034	0340	Coal tar	28.0	14.1	55.0		
035	0350	Coke oven gas	38.7	19.6	77.0		
036	0360	Gas works are (and other manuf gases for distribution)	38 7	10.6	77.0		

Yes, but... international data: not a source for national data

Calorific values require country-specific data collection

Source data for calorific values used in the annual questionnaires – AUSTRIA example (personal communication)

Fuel∙¤	Source∙¤	ı.	
Anthracite:¤	Emission·Trading·Schemen·(ETS)·X	≱ Biodiesels∙blended¤	Biofuelreport¤
Coking-coal-¤	steel∙industry∙¤	r Fuel∙oil:¤	refinery∙¤
Other bituminous coal ≭	ETS-&-coal-trade-companies¤	¥ White-spirit-and-SBP-¤	refinery∙¤
Sub-bituminous coal ¥	ETS∙¤	Lubricants:¤	refinery∙¤
Lignite¤	ETS-&-coal-trade-companies¤	[‡] Bitumen∙¤	refinery∙¤
Patent fuel · ¤	coal·trade-companies:¤	Paraffin waxes ∙¤	refinery∙¤
Coke∙oven∙coke∙¤	steel∙industry∙¤	Petroleum·coke·¤	ETS∙¤
Coaltar¤	steel∙industry∙¤	Pother oil products ¥	refinery∙¤
BKB∙¤	coal·trade·companies·¤	Natural∙gas∙¤	E-Control-(regulator)¤
Coke-oven·gas·¤	steel∙industry∙¤	Industrial waste (non-ren) 🛪	ETS-&-CHP-Statistics¤
Blast·furnace·gas·¤	steel∙industry∙¤	Municipal·WASTE-(ren-&-	CHP·Statistics·¤
Other·recovered·gases·¤	steel∙industry∙¤	non-ren):¤	
Peat∙¤	Default∙¤	Solid biofuels ¥	Austrian-Energy-Agency & · ETS·¤
		Charcoal:¤	ETS-&-coal-trade-companies¤
		Biogases:¤	CHP·Statistics: X
		Biodiesels:	Biofuel∙report∙¤

What experience can be shared among experts? What are the challenges?

Developing good quality national data on calorific value is essential

Calorific value data quality equally impacts energy balances and inventories. Experts may:

- Enhance information exchange at national level among inventory and energy statistics experts (IEA can help if needed – happens when discrepancies occur)
- Enhance effort on national data collection what are the possible sources? How to collect the data? What is done elsewhere?
- Use international average values as reference, but not as substitute of national data

