Disruptive Electricity Market Innovation: Motivation & Pathways

Prof. Amro M. Farid1,2,3

1-Thayer School of Engineering at Dartmouth
2-Department of Computer Science at Dartmouth
3-Research Affiliate, MIT Mechanical Engineering

Invited Presentation
What is Next for Our Electricity Markets? Towards a New Market Regulatory Framework
IX Electricity Security Advisory Panel Workshop
International Energy Agency
Paris, FR
June 17, 2018
Presentation Abstract

Today’s restructured electricity markets are based on economic principles developed more than two decades ago, allowing competition in the power sector with the objective of improving economic efficiency, shifting risks to investors and, in relevant emerging economies, to reduce the burden on the treasury. Since then, many markets have successfully followed a pragmatic and constant learning-by-doing process, resulting in innovations and changes that allow them to improve power system performance while delivering electricity in a secure and affordable manner. Recently, however, a number of unprecedented developments are threatening to disrupt power systems around the world. These include the need to quickly and affordably decarbonize the economy, the introduction of new supply-and demand-side technologies, and expanded opportunities for consumer engagement. This presentation seeks to provoke a discussion towards disruptive innovation in electricity market design drawing on several recent publications including the ISO New England System Operational Analysis and Renewable Energy Integration Study and the New England Energy-Water Nexus Study. It provides seven key insights: 1.) The reliance on VRE curtailment is unsustainable leading to a 40% erosion of the VRE capacity factor. 2.) The reliance on virtual power plant demand response is also sustainable leading to a cascade of system imbalances and costs relative to a transactive energy model. 3.) Instead, eIoT-enabled transactive energy retail markets are required to activate the grid with a proliferation of decentralized “uber-like” grid services. 4.) Deep decarbonization will impose a “Beyond-Energy-Mindset” that facilitates an expanded portfolio of incentivized ancillary grid services. 5.) Demand-side retail aggregators will provide net social benefits while eroding the incumbent utility business model. 6.) Similarly, demand-side wholesale aggregators will do the same. 7.) Finally, energy storage will emerge as as a capable resource as the LCOE of Storage+VRE systems continues to decline in an energy excess-future.
Presentation Outline

Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eIoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Drivers for the Evolution of the Electric Power Grid

Traditional power systems were built upon the assumption that generation was controlled by a few centralized generation facilities that were designed to serve fairly passive loads.

Several drivers have emerged to challenge this assumption:

- Decarbonization
- Growing electricity demand
- Deregulation of electricity markets
- Active end-user participation
- Digital innovations in energy technologies

We need holistic techniques that integrate multiple layers of control and simultaneously manage technical and economic objectives.
EPECS Simulation has been used to study techno-economic system performance in the presence of variable renewable energy resources.
Presentation Outline

Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eloT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Real-Time Energy Market Dispatch: 2025 Conventional

2025-4-0423a Week 4: Real Time Schedules

- Nuclear
- Natural Gas
- Hydro
- Wood
- Municipal Solid Waste
- Coal
- Landfill Gas
- Kerosene
- Distillate Fuel Oil
- Liquid Natural Gas
- Jet Fuel
- Residual Fuel Oil
- No. 6 Fuel Oil
- Solar
- Wind

Power (MW)

Jan 23 Jan 24 Jan 25 Jan 26 Jan 27 Jan 28 Jan 29

Time (hours)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Real-Time Energy Market Dispatch: 2030 High VREs Plus

2030-3-0423a Week 16: Real Time Schedules

- Nuclear
- Natural Gas
- Wood
- Hydro
- Municipal Solid Waste
- Landfill Gas
- Kerosene
- Coal
- Distillate Fuel Oil
- Jet Fuel
- No. 6 Fuel Oil
- Residual Fuel Oil
- Solar
- Wind

Power (MW)

Time (hours)

Apr 17 Apr 18 Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 2030
The Emergence of Variable Renewable Energy (VRE)

<table>
<thead>
<tr>
<th>Past:</th>
<th>Generation/Supply</th>
<th>Load/Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Units: Few, Well-Controlled, Dispatchable, In Steady-State</td>
<td>Conventional Loads: Slow Moving, Highly Predictable, Always Served</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Future:</th>
<th>Generation/Supply</th>
<th>Load/Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-Controlled & Dispatchable</td>
<td>Thermal Units: (Potential erosion of capacity factor)</td>
<td>Demand Side Management: (Requires new control & market design)</td>
</tr>
<tr>
<td>Stochastic/Forecasted</td>
<td>Solar & Wind Generation: (Can cause unmanaged grid imbalances)</td>
<td>Conventional Loads: (Growing & Needs Curtailment)</td>
</tr>
</tbody>
</table>

The emergence of VRE necessitates active demand side resources.
VRE Curtailment: 2030 Scenarios

\[\text{Relative to the conventional scenarios, high VREs require significant curtailment.} \]
Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eloT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Reliance on Virtual Power Plant DR is Unsustainable

FERC Order 745 vs Transactive Energy: A Techno-Economic Policy Case
Presentation Outline

Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eIoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Enabling DSRs with the energy Internet of Things

- The emergence of demand side resources necessitates the distributed transactive control through the energy Internet of Things.
Most power plants are located near a water source. This indicates the strong coupling between the water supply and energy supply systems.
New England Energy Water Nexus Study: Key Findings

In 6 New England Scenarios, flexible energy-water resources are shown to enhance:

- Average levels (~150MW) and minimum levels (~150MW) of upward load following reserves
- Average levels (~900MW) and minimum levels (~1.2GW) of downward load following reserves
- Water withdrawals (~26,000 m³/min)
- Day Ahead Energy Market Production Costs (~3600$/hr)
- Real Time Energy Market Production Costs (~500/hr)
Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eIoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Regulation Reserves: 2030 Scenarios

Relative to the conventional scenarios, high VREs saturate regulation reserves.
Load Following Reserves: 2030 High VREs Plus Scenario

- In Spring & Autumn, the ability to track low net load conditions is constrained.
Ramping Reserves: 2025 Conventional Scenario

2025-4 Real Time Upward & Downward Ramping Reserves

2025-4 Upward & Downward Ramping Reserves Duration Curve

Histogram of 2025-4 Upward & Downward Ramping Reserves Distributions

- RampR MEAN = 621 MW
- RampR STD = 194 MW
- RampR MAX = 1420 MW
- RampR MIN = 69 MW
- RampR MEAN = 238 MW
- RampR STD = 96 MW
- RampR MIN = 0 MW
- RampR MAX = 802 MW
Ramping Reserves: 2030 High VREs Plus Scenario

In Spring & Autumn, the ability to track low net load conditions is constrained.
Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: IoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
The Emergence of the Demand Side Retail Aggregator

Conventional Case:
Utility Revenue = (2000 kWh) \times (0.1$/kWh)
- (1200 kWh) \times (0.08$/kWh)
= $200 - $96 = $104

Consumer Cost = $200
Solar PV Revenue = $96

Transactive Energy Case:
Utility Revenue = (800 kWh) \times (0.1$/kWh)
= $80
Consumer Cost = (800 kWh) \times (0.1$/kWh)
+ (1200 kWh) \times (0.09$/kWh)
= $188
Solar PV Revenue = $108

∴ Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.
Emergence of the Demand Side Retail Aggregator

The eIoT transactive energy aggregation use case above shows net social benefits due to several enabling factors:

- The presence of prosumers with local solar generation that is, at times, \textit{inadequately compensated} by utilities encourages the emergence of a transactive energy marketplace.

- The solar generator’s value proposition leaves local consumers at times \textit{over-billed} by utilities.

- The transactive energy marketplace is likely to be strengthened if there is a strong \textit{sense of community} within the apartment building.

- There exists nearly \textit{ubiquitous} measurement, communication, and decision-making capabilities within the building to support the transactions. It provides price and quantity information for rational decision-making. The user-friendliness of these information technologies encourages greater adoption.

- There exists a \textit{sparsity} of measurement, communication, and decision-making capabilities between the building and the utility.
Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eloT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Emergence of the Demand Side Wholesale Aggregator

Conventional Retail Rate Case:
Consumer Cost = $200

Wholesale Real-Time Pricing Case:
Consumer Cost = $162
Utility Revenue = $0

Wholesale Real-Time Pricing w/ Load Shifting Case:
Consumer Cost = $134
Utility Revenue = $0

The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.
Presentation Outline

Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eIoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
The Emergence of Energy Storage

- In May 2017, SolarCity (a subsidiary of Tesla) partnered with the Kauai Island Utility Cooperative (KIUC) to install a 15 MW solar array paired with an 11 MW battery storage system. The project was financed using a 20-year PPA at a price of $139/MWh.

- In early 2017, KIUC signed a PPA with AES corporation at $110/MWh to finance a 28 MW solar array paired with a 20 MW/100 MWh battery system that is slated to come online by the end of 2018.

- In May 2017, NextEra Energy entered into a 20-year PPA with Tucson Electric Power to finance a 100 MW solar array paired with a 30 MW/120 MWh energy storage system—the agreed-upon price was $45/MWh.

- In December 2017, Xcel Energy’s Colorado utility subsidiary announced the results of a recent solicitation where the median bid price for solar-plus-storage projects was $36/MWh and the median bid price for wind-plus-storage projects was $21/MWh.

- **FERC Order 841** is a game-changer for energy-storage assets
- **Prediction:** Driven by a need to capitalize on solar projects, energy storage adoption will follow a physics-constrained supply curve 1.) fluidic-hydro 2.) thermal-building 3.) chemical-battery 4.) chemical-hydrogen

- The LCOE of Storage + VRE systems continues to decline in an energy-excess future.

Source EIA U.S. Battery Storage Market Trends 2018
Presentation Outline

Goal: To provoke discussion towards disruptive innovation in electricity market designs

- **Insight 1: Reliance on VRE Curtailment is Unsustainable**
 - VRE curtailment leads to a 40% erosion in the VRE capacity factor.

- **Insight 2: Reliance on Virtual Power Plant Demand Response is Unsustainable**
 - The presence of demand baseline errors – present only in the VPP implementation – leads to a cascade of system imbalances and costs as compared to a Transactive Energy model.

- **Insight 3: eIoT-enabled Transactive Energy Retail Markets are Required**
 - The integration of network-enabled physical devices can activate the grid periphery with a proliferation of decentralized “uber-like” grid services.

- **Insight 4: Beyond Energy -- the Proliferation of Ancillary Services**
 - Deep decarbonization imposes tremendous requirements for an expanded portfolio of incentivized ancillary grid services.

- **Insight 5: The Emergence of the Demand Side Retail Aggregator**
 - Self-aggregation of retail customers provides net social benefits while eroding the incumbent utility business model.

- **Insight 6: The Emergence of the Demand Side Wholesale Aggregator**
 - The entrance of demand-side aggregators into wholesale electricity markets further provides net social benefits while further eroding the incumbent utility business model.

- **Insight 7: The Emergence of Energy Storage**
 - The LCOE of Storage +VRE systems continues to decline in an energy-excess future.
Thank You

Prof. Amro M. Farid1,2
1-Thayer School of Engineering at Dartmouth
2-Department of Computer Science at Dartmouth

Email: amfarid_at_dartmouth_dot_edu

http://engineering.dartmouth.edu/liines