

Secure • Sustainable • Together

The importance of energy and activity data for technology policy modeling

2016 InterEnerStat Workshop:

Energy efficiency and end-use data and Meeting of Organisations

14 December 2016, Paris

Eric Masanet, PhD Energy Technology Policy Division International Energy Agency www.iea.org

Sizing the scale of the challenge ... and ETP **its technology and policy solutions** 2016

Contribution of technology area to global cumulative CO₂ reductions

The carbon intensity of the global economy can be cut by two-thirds through a diversified energy technology mix

GtCO₂

Progress in clean energy needs to accelerate

Technology Status today against 2DS targets by 2025

Clean energy deployment is still overall behind what is required to meet the 2°C goal, but recent progress on electric vehicles, solar PV and wind is promising

The challenge increases to get from 2 degrees to "well below" 2 degrees ...

Energy- and process-related CO₂ emissions by sector in the 2DS

Industry and transport account for 75% of the remaining emissions in the 2DS in 2050.

2016

Data disaggregation → sound analysis

International

Energy Agency

Index: 1990=1. Data for IEA18 (Australia, Austria, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Slovakia, Spain, Sweden, Switzerland, UK, USA). Source: IEA energy efficiency indicators database. TC: Temperature Corrected.

Selected IEA recommended indicators, by sector

Sector	Indicator (Level*)	Coverage	Energy data	Activity data
Residential	L2: Space heating energy consumption per floor area (heated)	All heating systems	Total space heating energy consumption	Total floor area
	L2: Cooking energy consumption per dwelling	All cooking devices	Total cooking energy consumption	Total number of dwellings
	L3: Energy consumption per appliance unit	By appliance type	Energy consumption for all appliances of type A	Number of appliances of type A
Services	L2: Space cooling energy consumption per floor area cooled	All cooling systems	Total space cooling energy consumption	Total floor area cooled
	L3: Lighting energy consumption per unit of activity	By service category	Lighting energy consumption for service category A	Unit activity of service category A
	L3: Other equipment energy consumption per unit of activity	By service category	Other equipment energy consumption for service category A	Unit activity of service category A
Industry	L2: Energy consumption per unit of physical output	Sub-sector	Total sub-sectoral energy consumption	Sub-sectoral physical output
Transport	L3: Passenger transport energy consumption per passenger-kilometre	By mode / passenger vehicle type	Energy consumption of passenger transport by mode / vehicle type A	Number of pkm of passenger mode / vehicle type A
	L3: Freight transport energy consumption per tonne-kilometre	By freight mode / vehicle type	Energy consumption of freight transport by freight mode / vehicle type B	Number of tkm of freight mode / vehicle type B

* Levels in the IEA energy indicators pyramid : L2 (Level 2), L3 (Level 3)

Source : IEA (EEI) 2014

The IEA energy indicators pyramid

International

iea

Energy Agency

Robust energy technology modeling requires a high degree of disaggregation

Source: IEA (2014). Energy Efficiency Indicators: Essentials for Policy Making. <u>http://www.iea.org/publications/freepublications/publication/energy-efficiency-indicators-</u> essentials-for-policy-making.html

International

iea

Energy Agency

International Energy Agency

iea

Level 2 indicators enable analytical linkages between drivers and end uses, which is critical for model calibration

International

iea

Energy Agency

iea International Energy Agency

Global buildings sector final energy savings by end use

Urban buildings account for more than 75% of global building final energy savings in 2050, led by space heating and cooling demand reductions

Source: ETP 2016

International

Energy Agency

Level 3 indicators enable analytical linkages between drivers and end uses, and end uses and technologies, which is critical for technology-rich energy systems modeling

International

iea

Energy Agency

International Energy Agency

iea

- Level 3 indicators require a deep understanding of technologies and their relevant energy system characteristics
- Typically requires extensive data matching from often disparate sources
- Technology-rich energy surveys are uncommon, and often infrequent

Energy intensity of the Brazilian cement industry, 1970-1999

Robust modeling of industrial subsectors often critically depends upon sufficient Level 3 technology data

Energy intensity of the US iron and steel industry, 1980-2005

Disaggregation to capture structural effects is typically important, but must also be done with consistent system boundaries in mind

International Energy Agency Modeling and energy data systems: synergies

ETP model uses the ASIF (activity-structure-intensity-fuel) methodology

iea

Fuel use in Argentina

IEA data coverage and transparency – Understanding energy use patterns

Fuel use in China

U.S. Manufacturing Energy Consumption Survey (MECS) vs. U.S. GHG Reporting Program (GHGRP) Food Processing Industry, 2011

Technology-rich energy systems modeling provides critical guidance to the energy policy community

Summary

- But this is not possible without credible and comprehensive data!
- Detailed activity and technology-level data are very important for technology-rich energy systems modeling
 - Requires coordination with subsector and technology expert communities
- Data matching is often required, but more disaggregated data and coordination among data collection institutions can help
- Level 3 data availability should be accelerated to meet the growing needs of the energy modeling, policy, and progress tracking communities
- Coordination and exchange between the modeling and data communities can be highly mutually beneficial