ENERGY STATISTIC

IEA's Approach to Energy Statistics Training

InterEnerStat Meeting, Dec. 2012

International Energy Agency

© OECD/IEA 2012

Energy statistics training

				OECD 1	fotal : 2	800					
	-	-	-	Millen Janne	is of oil equil	ratent			E	10.00	Tala
ONSUMPTION	8 peat	ol	products	0.05	Nuclear	nyara	solar etc.	tenew. & waste	Electrony	mous	1054
roduction	1034.86	896.40		948.89	692.32	112.87	81.75	226.10		0.61	3863.5
nports	381.29	1635.19	533.41	663.36				8.55	34.49	0.00	3195.9
 marine punkers 			-92.67					-		-	92.5
 avlation bunkers 			-09.13				-			-	-09.1
aux uranges	-17.00	9.74	~ ~ ~ ~	1.14				-9.49			- 20.1
PES	1128.09	2157.22	-121.82	1270.98	592.32	112.87	\$1.75	229.46	0.95	0.61	5422.4
tatistical differences	-13.12	-22.94	-13.24	3.74			-0.00	0.01	0.03	-0.03	-45.5
becistoty plants	-816.21	-6.91	-61.10	-320.66	-566.78	-112.87	-42.86	-38.56	829.25	-0.23	-1158.9
wat plants	-63.70		-1.05	-107.79	-3.54		-1.06	-26.21	-0.33	13.71	-00.0
last tumaces	49.47	- 1	-1.19	-0.11							-60.7
AS WORS	2.41		-1.99	2.69				-0.01			-1.7
X remedes	-	-2118.53	2114.75	-0.57							-1.3
etrochemical plants		24.75	-25.29							-	-0.5
iguefaction plants	0.01	0.57		-1.71				-0.13		-0.33	-1,1
hergy ind, own use	-14.27	-0.27	+119.50	-98.73			-0.00	-0.17	-67.12	-8.23	-305.2
06665	-0.90		-0.01	-2.81			-0.14	0.04	-66.70	-4.84	-65.4
FC	135.08	3.79	1797.85	737.38			7.56	199.17	794.97	58.96	3685.8
NDUSTRY	109.76	0.76	123.74	253.10			0.42	70.53	266.51	24.60	643.4
nemical and petrochem.	11.53	9.75	27.36	61.78			0.00	1.68	49.74	11.33	164.1
ion-ferrous metals	2.76		3.11	11.71			0.00	0.90	28.58	0.43	45.7
ion-metallic minerals	21.31		21.90	31.03			0.00	4.04	15.67	0.22	90.0
achinery	0.42		4.65	19.09			0.00	0.05	30.04	0.70	56.3
Aning and quarrying	0.00		5.82	9.91				0.00	0.13	0.22	24.0
aper, pulp and printing	7.70		9.09	23.17		- 1	0.14	44.92	31.96	3.68	120.6
Vood and wood products	0.15	-	3.09	2.77	-	-	-	10.15	5.14	0.70	22.0
Construction	2.87		10.39	2.23			0.00	0.09	1.74	0.05	17.3
ion-specified	13.28		19.79	19.00			0.28	4.23	25.75	3.27	65.6
RANSPORT	0.11	-	1120.15	22.29	-	-		50.75	9.60	-	1150.5
omestic avation			73.86					-			73.8
Lali	0.01		16.76	1.00		- 1			7.54		24.3
speine transport			0.02	19.95	-				0.42		29.3
omesic navigation	0.10		10.09	0.14					1.72	- 1	16.9
THER	21.95		218.52	431.95			7.14	58.85	518.75	34.46	1291.6
lesidential	15.16		99.41	271.00	-		5.62	82.28	247.65	18.37	709.4
comm. and public services	4.65		09.50	148.38			1.07	4.65	246.56	11.09	406.1
lishing	1.10		4.05	0.00			0.03	1.41	0.22	0.02	4.3
kon-specified	0.75		1.74	0.05	-		0.27	0.01	16.71	4.67	33.0
ION-ENERGY USE	3.27	2.54	327.56	30.05						- 1	363.8
of which: feedblocks	1.05	2.04	220.51	28,90							253.43
transport .			4,47								4,6
TO BE	0.20	· ·	3.60					· ·	· ·	· ·	
Electricity and Heat Output											
Sec. generated - TWh Electroly plants	3682.45	35.14	343.02	2364.74	2272.42	1312.44	244,48	220.52		0.85	10676.11
CHIP plants	324.52	0.00	58.98	539.17	13.15		2.37	95.44		0.43	1034.07
leal generated - PJ	852.07	0.01	272.63	1382.24	4.82		24.28	462.51	6.84	39.94	3045.53
CHP plants	706.88	0.01	246.16	1147.87	4.82		10.11	327.59	0.19	12.82	2456.45

- Overall philosophy
- Substance
- Participants
- Trainers
- Financing
- Other

Improve the quality of energy statistics worldwide for better data transparency, through a training course that is:

Highly interactive

- Information sharing from IEA and course participants;
- Moderated discussions among participants;
- IEA staff assisting participants with exercises;
- Side meetings, social events (in Paris or regionally)
 Using multiple learning methods
- Instructor led learning (Power Point);
- Question and answer;
- Exercises;
- Peer to peer learning;
- Manuals when possible

International Energy Agency

iea

Learning objectives

Understanding of international standards for energy data collection and processing

Understand how the IEA has implemented these standards (IEA methodology)

Cal no

Learning objectives (2)

Understanding how data can be used for planning and implementation of energy policy

International

iea

Energy Agency

Understand how to use IEA's information for analysis purposes

Learning objectives (3)

- Data entry, data quality testing, understanding of definitions
- Unit conversions, basic math
- Calculation of transformation efficiencies
 - Fuels to electricity
 - Coal to coke

International

Energy Agency

Wood to charcoal

Course specifics

International

- Usually two participants per computer, so they can work in teams.
- For smaller trainings, one participant per computer.
- One presentation on one topic followed by several exercises.

Course specifics (2)

de al par

iea

Modules	Exercises	Subject Matter Tested
Introduction		Importance of energy statistics
Country presentations	Moderated discussion of country issues and challenges	Extent to which country follows international standards and has appropriate data collection and processing infrastructure and resources.
Annual oil	Data entry, running checks	Definitions, correcting errors
Monthly oil	Data entry, running checks	Definitions, correcting errors
Annual gas	Data entry, calorific values, normal vs. standard, imports/export	Definitions, weighted averages, conversions, country of origin/destination
Monthly gas	Data entry, running checks	Definitions, correcting errors
Coal	Data entry, calorific values, transformation	Definitions, calculating efficiencies, identifying errors
Renewables	Data entry, renewable/non- renewable, biofuels, capacity factor	Definitions, allocations, direct use vs. blending, availability of resource

dia and

iea

Modules	Exercises	Subject Matter Tested
Electricity	Data entry, capacity factor, type of output, efficiency, imports/exports	Definitions, autoproducers vs. main activity, output efficiency, transit trade.
Checks and consistency	Data entry, data consistency, units, missing data	Definitions, data comparison, unit conversions, identifying errors
Beyond 2020 and EDMC	Data presentation and graphs, data entry and corrections	Data manipulation, data presentation, online data submission, performing data checks and corrections
Energy Balances	Balance builder, questions on balance format and content	Definitions, running macros, data manipulation.
Energy indicators	Calculating indicators	Definitions, data identification, climate correction
Indicators manual	Data collection issues, designing biomass data collection	Definitions, solving data collection challenges, learning from others
Prices and taxes	Electricity prices, households vs. industry, gasoline and diesel prices, natural gas	Definitions, unit conversions, ex-tax prices, taxes and charges, Excel functionality.

Participants

nternationa

- Try to minimize the number of participants who do not work directly with data
- Statistical offices or energy ministry personnel who collect and process energy data
- Application process requests CVs and other specifics
- Selection process based on CVs, geographic balance, previous participation, etc.
- Participants can work on their own data or default data

- IEA statisticians who work on Non-OECD statistics help participants with exercises
- Helps create link between in-country and IEA statisticians

Frainers

Internationa

- Additional experts can be tapped from other Divisions: energy efficiency, for example
- When meetings take place at the IEA, usually France presents how they collect their statistics.

- For Paris-based training, most participants are selffunded but training is free;
- Some match funding (typically 5-6 participants)
- One scholarship offered by EDC

Internationa

- For regional trainings country typically pays all venue and participant-related costs. IEA covers the costs of its trainers
- If IEA collaborates with other organisation in regional training, this organisation could fund participants and venue.

March, October

Internationa

Energy Agency

- Open to OECD and non-OECD countries
- Difficult selection process: over 100 applicants for 25 spots

Different types of training

- Country-specific regional training at IEA
 - Indonesia (2011), Vietnam (2012)
 - Participants selected from governments and companies
- Country-specific regional trainings abroad
 - South Africa, Chile (2010) Central America (2011), Russia (2012)

- AFREC (4 sessions in different African regions, 2012), INOGATE (Caspian and Black Sea countries, 2012)
- Training organised by another organisation where IEA participates

Different types of training (2)

- IEF for JODI
- UN
- APEC

International

- Keep participants active and not passive importance of exercises
- Make sure there is enough support staff for the exercises
- Incentives to complete exercises help
- Starting with country presentations, highlighting strong and weak points, helps to set the stage and break the ice
- Social and side events also help
- Selection process of the participants is very important
- Participants appreciate receiving certificates

Thank you

WED@iea.org